albertmartinez's picture
update sts
77196ea
import time
import pandas as pd
import polars as pl
import torch
from datasets import Dataset
from sentence_transformers import SentenceTransformer
def sts(modelname, data1, data2, score):
st = time.time()
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
modelname,
device=device,
trust_remote_code=True,
)
sentences1 = Dataset.from_pandas(pd.read_csv(data1, on_bad_lines='skip', header=0, sep="\t"))
sentences2 = Dataset.from_pandas(pd.read_csv(data2, on_bad_lines='skip', header=0, sep="\t"))
embeddings1 = model.encode(sentences1["text"], normalize_embeddings=True, batch_size=1024,
show_progress_bar=True)
embeddings2 = model.encode(sentences2["text"], normalize_embeddings=True, batch_size=1024,
show_progress_bar=True)
similarity_matrix = model.similarity(embeddings1, embeddings2)
df_pd = pd.DataFrame(similarity_matrix)
dfi = df_pd.__dataframe__()
df = pl.from_dataframe(dfi)
df_matrix_with_index = df.with_row_index(name="row_index").with_columns(pl.col("row_index").cast(pl.UInt64))
df_long = df_matrix_with_index.unpivot(index="row_index", variable_name="column_index",
value_name="score").with_columns(pl.col("column_index").cast(pl.UInt64))
df_sentences1 = pl.DataFrame(sentences1.to_pandas()).with_row_index(name="row_index").with_columns(
pl.col("row_index").cast(pl.UInt64))
df_sentences2 = pl.DataFrame(sentences2.to_pandas()).with_row_index(name="column_index").with_columns(
pl.col("column_index").cast(pl.UInt64))
df_long = (df_long
.with_columns([pl.col("score").round(4).cast(pl.Float32)]) # Ensure column_index is UInt32
.join(df_sentences1, on="row_index")
.join(df_sentences2, on="column_index"))
df_long = df_long.rename({
"text": "sentences1",
"text_right": "sentences2",
}).drop(["row_index", "column_index"])
elapsed_time = time.time() - st
print('Execution time:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))
return df_long.filter(pl.col("score") > score).sort(["score"],
descending=True)