|
import time |
|
import pandas as pd |
|
import polars as pl |
|
import torch |
|
from datasets import Dataset |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
def sts(modelname, data1, data2, score): |
|
st = time.time() |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = SentenceTransformer( |
|
modelname, |
|
device=device, |
|
trust_remote_code=True, |
|
) |
|
|
|
sentences1 = Dataset.from_pandas(pd.read_csv(data1, on_bad_lines='skip', header=0, sep="\t")) |
|
sentences2 = Dataset.from_pandas(pd.read_csv(data2, on_bad_lines='skip', header=0, sep="\t")) |
|
|
|
embeddings1 = model.encode(sentences1["text"], normalize_embeddings=True, batch_size=1024, |
|
show_progress_bar=True) |
|
embeddings2 = model.encode(sentences2["text"], normalize_embeddings=True, batch_size=1024, |
|
show_progress_bar=True) |
|
|
|
similarity_matrix = model.similarity(embeddings1, embeddings2) |
|
|
|
df_pd = pd.DataFrame(similarity_matrix) |
|
dfi = df_pd.__dataframe__() |
|
df = pl.from_dataframe(dfi) |
|
|
|
df_matrix_with_index = df.with_row_index(name="row_index").with_columns(pl.col("row_index").cast(pl.UInt64)) |
|
df_long = df_matrix_with_index.unpivot(index="row_index", variable_name="column_index", |
|
value_name="score").with_columns(pl.col("column_index").cast(pl.UInt64)) |
|
df_sentences1 = pl.DataFrame(sentences1.to_pandas()).with_row_index(name="row_index").with_columns( |
|
pl.col("row_index").cast(pl.UInt64)) |
|
df_sentences2 = pl.DataFrame(sentences2.to_pandas()).with_row_index(name="column_index").with_columns( |
|
pl.col("column_index").cast(pl.UInt64)) |
|
|
|
df_long = (df_long |
|
.with_columns([pl.col("score").round(4).cast(pl.Float32)]) |
|
.join(df_sentences1, on="row_index") |
|
.join(df_sentences2, on="column_index")) |
|
|
|
df_long = df_long.rename({ |
|
"text": "sentences1", |
|
"text_right": "sentences2", |
|
}).drop(["row_index", "column_index"]) |
|
|
|
elapsed_time = time.time() - st |
|
print('Execution time:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) |
|
|
|
return df_long.filter(pl.col("score") > score).sort(["score"], |
|
descending=True) |
|
|