ai-pronunciation-trainer / WordMatching.py
alessandro trinca tornidor
doc: add/update docstring and typing hints
0700cb3
import time
from string import punctuation
from typing import List, Tuple
import numpy as np
from dtwalign import dtw_from_distance_matrix
from ortools.sat.python import cp_model
import WordMetrics
from constants import app_logger
offset_blank = 1
TIME_THRESHOLD_MAPPING = 5.0
def get_word_distance_matrix(words_estimated: list, words_real: list) -> np.ndarray:
"""
Calculate the word distance matrix using Levenshtein distance.
Args:
words_estimated (list): List of estimated words.
words_real (list): List of real words.
Returns:
np.ndarray: The word distance matrix.
"""
number_of_real_words = len(words_real)
number_of_estimated_words = len(words_estimated)
word_distance_matrix = np.zeros(
(number_of_estimated_words + offset_blank, number_of_real_words))
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
word_distance_matrix[idx_estimated, idx_real] = WordMetrics.edit_distance_python(
words_estimated[idx_estimated], words_real[idx_real])
if offset_blank == 1:
for idx_real in range(number_of_real_words):
word_distance_matrix[number_of_estimated_words,
idx_real] = len(words_real[idx_real])
return word_distance_matrix
def get_best_path_from_distance_matrix(word_distance_matrix):
"""
Get the best path from the word distance matrix using constraint programming.
Args:
word_distance_matrix (np.ndarray): The word distance matrix.
Returns:
np.ndarray: The best path indices.
"""
modelCpp = cp_model.CpModel()
number_of_real_words = word_distance_matrix.shape[1]
number_of_estimated_words = word_distance_matrix.shape[0] - 1
number_words = np.maximum(number_of_real_words, number_of_estimated_words)
estimated_words_order = [modelCpp.NewIntVar(0, int(
number_words - 1 + offset_blank), 'w%i' % i) for i in range(number_words + offset_blank)]
# They are in ascending order
for word_idx in range(number_words - 1):
modelCpp.Add(
estimated_words_order[word_idx + 1] >= estimated_words_order[word_idx])
total_phoneme_distance = 0
real_word_at_time = {}
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
real_word_at_time[idx_estimated, idx_real] = modelCpp.NewBoolVar(
'real_word_at_time' + str(idx_real) + '-' + str(idx_estimated))
modelCpp.Add(estimated_words_order[idx_estimated] == idx_real).OnlyEnforceIf(
real_word_at_time[idx_estimated, idx_real])
total_phoneme_distance += word_distance_matrix[idx_estimated,
idx_real] * real_word_at_time[idx_estimated, idx_real]
# If no word in time, difference is calculated from empty string
for idx_real in range(number_of_real_words):
word_has_a_match = modelCpp.NewBoolVar(
'word_has_a_match' + str(idx_real))
modelCpp.Add(sum([real_word_at_time[idx_estimated, idx_real] for idx_estimated in range(
number_of_estimated_words)]) == 1).OnlyEnforceIf(word_has_a_match)
total_phoneme_distance += word_distance_matrix[number_of_estimated_words,
idx_real] * word_has_a_match.Not()
# Loss should be minimized
modelCpp.Minimize(total_phoneme_distance)
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = TIME_THRESHOLD_MAPPING
status = solver.Solve(modelCpp)
mapped_indices = []
try:
for word_idx in range(number_words):
mapped_indices.append(
(solver.Value(estimated_words_order[word_idx])))
return np.array(mapped_indices, dtype=int)
except:
return []
def get_resulting_string(mapped_indices: np.ndarray, words_estimated: list, words_real: list) -> Tuple[List, List]:
"""
Get the resulting string and indices from the mapped indices.
Args:
mapped_indices (np.ndarray): The mapped indices.
words_estimated (list): List of estimated words.
words_real (list): List of real words.
Returns:
Tuple[List, List]: The mapped words and their indices.
"""
mapped_words = []
mapped_words_indices = []
WORD_NOT_FOUND_TOKEN = '-'
number_of_real_words = len(words_real)
for word_idx in range(number_of_real_words):
position_of_real_word_indices = np.where(
mapped_indices == word_idx)[0].astype(int)
if len(position_of_real_word_indices) == 0:
mapped_words.append(WORD_NOT_FOUND_TOKEN)
mapped_words_indices.append(-1)
continue
if len(position_of_real_word_indices) == 1:
mapped_words.append(
words_estimated[position_of_real_word_indices[0]])
mapped_words_indices.append(position_of_real_word_indices[0])
continue
# Check which index gives the lowest error
if len(position_of_real_word_indices) > 1:
error = 99999
best_possible_combination = ''
best_possible_idx = -1
for single_word_idx in position_of_real_word_indices:
idx_above_word = single_word_idx >= len(words_estimated)
if idx_above_word:
continue
error_word = WordMetrics.edit_distance_python(
words_estimated[single_word_idx], words_real[word_idx])
if error_word < error:
error = error_word * 1
best_possible_combination = words_estimated[single_word_idx]
best_possible_idx = single_word_idx
mapped_words.append(best_possible_combination)
mapped_words_indices.append(best_possible_idx)
continue
return mapped_words, mapped_words_indices
def get_best_mapped_words(words_estimated: list | str, words_real: list | str, use_dtw:bool = False) -> tuple[list, list]:
"""
Get the best mapped words using either DTW or constraint programming.
Args:
words_estimated (list | str): List of estimated words or a single estimated word.
words_real (list | str): List of real words or a single real word.
use_dtw (bool, optional): Whether to use DTW for mapping. Defaults to False.
Returns:
tuple[list, list]: The mapped words and their indices.
"""
app_logger.info(f"words_estimated: '{words_estimated}', words_real: '{words_real}', use_dtw:{use_dtw}.")
word_distance_matrix = get_word_distance_matrix(
words_estimated, words_real)
app_logger.debug(f"word_distance_matrix: '{word_distance_matrix}'.")
start = time.time()
app_logger.info(f"use_dtw: '{use_dtw}'.")
if use_dtw:
alignment = (dtw_from_distance_matrix(word_distance_matrix.T))
app_logger.debug(f"alignment: '{alignment}'.")
mapped_indices = alignment.get_warping_path()[:len(words_estimated)]
app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
duration_of_mapping = time.time()-start
else:
mapped_indices = get_best_path_from_distance_matrix(word_distance_matrix)
app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
duration_of_mapping = time.time()-start
# In case or-tools doesn't converge, go to a faster, low-quality solution
check_mapped_indices_or_duration = len(mapped_indices) == 0 or duration_of_mapping > TIME_THRESHOLD_MAPPING+0.5
app_logger.info(f"check_mapped_indices_or_duration: '{check_mapped_indices_or_duration}'.")
if check_mapped_indices_or_duration:
#mapped_indices = (dtw_from_distance_matrix(
# word_distance_matrix)).path[:len(words_estimated), 1]
word_distance_matrix_transposed = word_distance_matrix.T
app_logger.debug(f"word_distance_matrix_transposed: '{word_distance_matrix_transposed}'.")
alignment = dtw_from_distance_matrix(word_distance_matrix_transposed)
app_logger.debug(f"check_mapped_indices_or_duration, alignment: '{alignment}'.")
mapped_indices = alignment.get_warping_path()
app_logger.debug(f"check_mapped_indices_or_duration, mapped_indices: '{mapped_indices}'.")
mapped_words, mapped_words_indices = get_resulting_string(mapped_indices, words_estimated, words_real)
app_logger.debug(f"mapped_words: '{mapped_words}', mapped_words_indices: '{mapped_words_indices}', duration_of_mapping:{duration_of_mapping}.")
return mapped_words, mapped_words_indices
## Faster, but not optimal
# def get_best_mapped_words_dtw(words_estimated: list, words_real: list) -> list:
# from dtwalign import dtw_from_distance_matrix
# word_distance_matrix = get_word_distance_matrix(
# words_estimated, words_real)
# mapped_indices = dtw_from_distance_matrix(
# word_distance_matrix).path[:-1, 0]
#
# mapped_words, mapped_words_indices = get_resulting_string(
# mapped_indices, words_estimated, words_real)
# return mapped_words, mapped_words_indices
def getWhichLettersWereTranscribedCorrectly(real_word: str, transcribed_word: list) -> list:
"""
Determine which letters were transcribed correctly.
Args:
real_word (str): The real word.
transcribed_word (str): The transcribed word.
Returns:
list: A list indicating whether each letter was transcribed correctly (1 for correct, 0 for incorrect).
"""
is_leter_correct = [None] * len(real_word)
for idx, letter in enumerate(real_word):
letter = letter.lower()
transcribed_word[idx] = transcribed_word[idx].lower()
if letter == transcribed_word[idx] or letter in punctuation:
is_leter_correct[idx] = 1
else:
is_leter_correct[idx] = 0
return is_leter_correct
# def parseLetterErrorsToHTML(word_real, is_leter_correct):
# word_colored = ''
# correct_color_start = '*'
# correct_color_end = '*'
# wrong_color_start = '-'
# wrong_color_end = '-'
# for idx, letter in enumerate(word_real):
# if is_leter_correct[idx] == 1:
# word_colored += correct_color_start + letter + correct_color_end
# else:
# word_colored += wrong_color_start + letter + wrong_color_end
# return word_colored