ai-pronunciation-trainer / lambdaSpeechToScore.py
alessandro trinca tornidor
doc: add/update docstring and typing hints
0700cb3
import base64
import json
from pathlib import Path
import tempfile
import time
from typing import Dict, Any
try:
from typing import LiteralString
except ImportError:
from typing_extensions import LiteralString
import audioread
import numpy as np
import torch
from torchaudio.transforms import Resample
import WordMatching as wm
import pronunciationTrainer
import utilsFileIO
from constants import app_logger, sample_rate_resample, sample_rate_start, USE_DTW, IS_TESTING, tmp_audio_extension
trainer_SST_lambda = {'de': pronunciationTrainer.getTrainer("de"), 'en': pronunciationTrainer.getTrainer("en")}
transform = Resample(orig_freq=sample_rate_start, new_freq=sample_rate_resample)
def lambda_handler(event: dict[str], context: Any) -> str:
"""
Lambda handler for speech-to-score.
Args:
event (Dict[str, Any]): The event data containing the request body.
context (Any): The context in which the lambda function is executed.
Returns:
str: The json response containing the speech-to-score results.
"""
body = event['body']
data = json.loads(body)
real_text = data['title']
base64_audio = data["base64Audio"]
app_logger.debug(f"base64Audio:{base64_audio} ...")
file_bytes_or_audiotmpfile = base64.b64decode(base64_audio[22:].encode('utf-8'))
language = data['language']
try:
use_dtw = data["useDTW"]
app_logger.info(f'use_dtw: "{type(use_dtw)}", "{use_dtw}".')
except KeyError:
use_dtw = USE_DTW
if len(real_text) == 0:
return utilsFileIO.return_response_ok('{}')
output = get_speech_to_score_dict(
real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, use_dtw=use_dtw
)
pronunciation_accuracy = int(output["pronunciation_accuracy"])
output["pronunciation_accuracy"] = f"{pronunciation_accuracy}"
output = json.dumps(output)
app_logger.debug(f"output: {output} ...")
return output
def get_speech_to_score_dict(
real_text: str, file_bytes_or_audiotmpfile: str | bytes | dict, language: str = "en", extension: str = tmp_audio_extension, use_dtw: bool = False
) -> Dict[str | Any, float | LiteralString | str | Any]:
"""
Process the audio file and return a dictionary with speech-to-score results.
Args:
use_dtw:
real_text (str): The text to be matched with the audio.
file_bytes_or_audiotmpfile (str | bytes | dict): The audio file in bytes or a temporary file.
language (str): The language of the audio.
extension (str): The file extension of the audio file.
Returns:
Dict[str | Any, float | LiteralString | str | Any]: The speech-to-score results.
"""
from soundfile import LibsndfileError
app_logger.info(f"real_text:{real_text} ...")
app_logger.debug(f"file_bytes:{file_bytes_or_audiotmpfile} ...")
app_logger.info(f"language:{language} ...")
if real_text is None or len(real_text) == 0:
raise ValueError(f"cannot read an empty/None text: '{real_text}'...")
if language is None or len(language) == 0:
raise NotImplementedError(f"Not tested/supported with '{language}' language...")
if file_bytes_or_audiotmpfile is None or len(file_bytes_or_audiotmpfile) == 0:
raise OSError(f"cannot read an empty/None file: '{file_bytes_or_audiotmpfile}'...")
if not isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)) and Path(file_bytes_or_audiotmpfile).exists() and Path(file_bytes_or_audiotmpfile).stat().st_size == 0:
raise OSError(f"cannot read an empty file: '{file_bytes_or_audiotmpfile}'...")
start0 = time.time()
random_file_name = file_bytes_or_audiotmpfile
app_logger.debug(f"random_file_name:{random_file_name} ...")
if isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)):
app_logger.debug("writing streaming data to file on disk...")
with tempfile.NamedTemporaryFile(prefix="temp_sound_speech_score_", suffix=extension, delete=False) as f1:
f1.write(file_bytes_or_audiotmpfile)
random_file_name = f1.name
duration = time.time() - start0
app_logger.info(f'Saved binary data in file in {duration}s.')
start = time.time()
app_logger.info(f"Loading temp '{random_file_name}' file...")
try:
signal, samplerate = soundfile_load(random_file_name)
except LibsndfileError as sfe:
# https://github.com/beetbox/audioread/issues/144
# deprecation warnings => pip install standard-aifc standard-sunau
app_logger.error(f"Error reading file {random_file_name}: {sfe}, re-try with audioread...")
signal, samplerate = audioread_load(random_file_name)
duration = time.time() - start
app_logger.info(f'Read {extension} file {random_file_name} in {duration}s.')
signal_transformed = transform(torch.Tensor(signal)).unsqueeze(0)
duration = time.time() - start
app_logger.info(f'Loaded {extension} file {random_file_name} in {duration}s.')
language_trainer_sst_lambda = trainer_SST_lambda[language]
app_logger.info('language_trainer_sst_lambda: preparing...')
result = language_trainer_sst_lambda.processAudioForGivenText(signal_transformed, real_text)
app_logger.info(f'language_trainer_sst_lambda: result: {result}...')
# start = time.time()
# if remove_random_file:
# os.remove(random_file_name)
# duration = time.time() - start
# app_logger.info(f'Deleted file {random_file_name} in {duration}s.')
start = time.time()
real_transcripts_ipa = ' '.join(
[word[0] for word in result['real_and_transcribed_words_ipa']])
matched_transcripts_ipa = ' '.join(
[word[1] for word in result['real_and_transcribed_words_ipa']])
real_transcripts = ' '.join(
[word[0] for word in result['real_and_transcribed_words']])
matched_transcripts = ' '.join(
[word[1] for word in result['real_and_transcribed_words']])
words_real = real_transcripts.lower().split()
mapped_words = matched_transcripts.split()
is_letter_correct_all_words = ''
for idx, word_real in enumerate(words_real):
mapped_letters, mapped_letters_indices = wm.get_best_mapped_words(
mapped_words[idx], word_real, use_dtw=use_dtw)
is_letter_correct = wm.getWhichLettersWereTranscribedCorrectly(
word_real, mapped_letters) # , mapped_letters_indices)
is_letter_correct_all_words += ''.join([str(is_correct)
for is_correct in is_letter_correct]) + ' '
pair_accuracy_category = ' '.join(
[str(category) for category in result['pronunciation_categories']])
duration = time.time() - start
duration_tot = time.time() - start0
app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
pronunciation_accuracy = float(result['pronunciation_accuracy'])
ipa_transcript = result['recording_ipa']
return {
'real_transcript': result['recording_transcript'],
'ipa_transcript': ipa_transcript,
'pronunciation_accuracy': pronunciation_accuracy,
'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
'pair_accuracy_category': pair_accuracy_category,
'start_time': result['start_time'],
'end_time': result['end_time'],
'is_letter_correct_all_words': is_letter_correct_all_words,
"random_file_name": random_file_name
}
def get_speech_to_score_tuple(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True) -> tuple:
"""
Process the audio file and return a tuple with speech-to-score results.
Args:
real_text (str): The text to be matched with the audio.
file_bytes_or_audiotmpfile (str | dict): The audio file in bytes or a temporary file.
language (str): The language of the audio.
remove_random_file (bool): Whether to remove the temporary file after processing.
Returns:
tuple: A tuple containing real transcripts, letter correctness, pronunciation accuracy, IPA transcript, real transcripts in IPA, number of words, first audio file, and JSON output.
"""
output = get_speech_to_score_dict(
real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile,
language=language
)
random_file_name = output["random_file_name"]
del output["random_file_name"]
real_transcripts = output['real_transcripts']
is_letter_correct_all_words = output['is_letter_correct_all_words']
pronunciation_accuracy = output['pronunciation_accuracy']
output["pronunciation_accuracy"] = f"{pronunciation_accuracy:.2f}"
ipa_transcript = output['ipa_transcript']
real_transcripts_ipa = output['real_transcripts_ipa']
end_time = [float(x) for x in output['end_time'].split(" ")]
start_time = [float(x) for x in output['start_time'].split(" ")]
num_words = len(end_time)
app_logger.debug(f"start splitting recorded audio into {num_words} words...")
audio_files, audio_durations = get_splitted_audio_file(audiotmpfile=file_bytes_or_audiotmpfile, start_time=start_time, end_time=end_time)
remove_random_file = not IS_TESTING and remove_random_file
if remove_random_file:
app_logger.info(f"{IS_TESTING} => remove_random_file:{remove_random_file}, removing:{random_file_name} ...")
Path(random_file_name).unlink(missing_ok=True)
app_logger.info(f"removed:{random_file_name} ...")
output = {'audio_files': audio_files, "audio_durations": audio_durations, **output}
first_audio_file = audio_files[0]
return real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, ipa_transcript, real_transcripts_ipa, num_words, first_audio_file, json.dumps(output), random_file_name
def soundfile_write(audiofile: str | Path, data: np.ndarray, samplerate: int) -> None:
"""
Write audio data to a file using soundfile.
Args:
audiofile (str | Path): The path to the audio file.
data (np.ndarray): The audio data to write.
samplerate (int): The sample rate of the audio data.
Returns:
None
"""
import soundfile as sf
sf.write(audiofile, data, samplerate)
def get_selected_word(idx_recorded_word: int, raw_json_output: str) -> tuple[str, str, float]:
"""
Get the selected word, its audio file, and duration from the recognition output.
Args:
idx_recorded_word (int): The index of the recorded word.
raw_json_output (str): The JSON output from the recognition process.
Returns:
tuple: A tuple containing the audio file, the current word, and its duration.
"""
recognition_output = json.loads(raw_json_output)
list_audio_files = recognition_output["audio_files"]
real_transcripts = recognition_output["real_transcripts"]
audio_durations = recognition_output["audio_durations"]
real_transcripts_list = real_transcripts.split()
app_logger.info(f"idx_recorded_word:{idx_recorded_word} ...")
current_word = real_transcripts_list[idx_recorded_word]
app_logger.info(f"current word:{current_word} ...")
current_duration = audio_durations[idx_recorded_word]
app_logger.info(f"current_duration:{current_duration} ...")
return list_audio_files[idx_recorded_word], current_word, current_duration
def get_splitted_audio_file(audiotmpfile: str | Path, start_time: list[float], end_time: list[float]) -> tuple[list[str], list[float]]:
"""
Split the audio file into segments based on start and end times.
Args:
audiotmpfile (str | Path): The path to the audio file.
start_time (list[float]): The start times of the segments.
end_time (list[float]): The end times of the segments.
Returns:
tuple: A tuple containing a list of audio files and their durations.
"""
import soundfile as sf
audio_files = []
audio_durations = []
app_logger.info(f"start_time:{start_time}, end_time:{end_time} ...")
for n, (start_nth, end_nth) in enumerate(zip(start_time, end_time)):
# assert start_nth < end_nth, f"start_nth:{start_nth} (index {n}) should be less than end_nth:{end_nth} (start_time:{start_time}, end_time:{end_time})..."
signal_nth, samplerate = soundfile_load(audiotmpfile, offset=start_nth, duration=end_nth - start_nth)
audiofile = get_file_with_custom_suffix(audiotmpfile, f"_part{n}_start{start_nth}_end{end_nth}")
soundfile_write(audiofile=audiofile, data=signal_nth, samplerate=samplerate)
app_logger.info(f"audio file {audiofile} written...")
audio_files.append(str(audiofile))
duration = end_nth - start_nth
app_logger.info(f"audio file {audiofile} has duration {duration}...")
audio_durations.append(duration)
return audio_files, audio_durations
def get_file_with_custom_suffix(basefile: str | Path, custom_suffix: str) -> Path:
"""
Generate a file path with a custom suffix.
Args:
basefile (str | Path): The base file path.
custom_suffix (str): The custom suffix to add to the file name.
Returns:
Path: The new file path with the custom suffix.
"""
pathname = Path(basefile)
dirname, filename_no_ext, filename_ext = pathname.parent, pathname.stem, pathname.suffix
output_file = dirname / f"{filename_no_ext}_{custom_suffix}.{filename_ext}"
return output_file
# From Librosa
def calc_start_end(sr_native: int, time_position: float, n_channels: int) -> int:
"""
Calculate the start or end position in samples.
Args:
sr_native (int): The native sample rate.
time_position (float): The time position in seconds.
n_channels (int): The number of audio channels.
Returns:
int: The start or end position in samples.
"""
return int(np.round(sr_native * time_position)) * n_channels
def soundfile_load(path: str | Path, offset: float = 0.0, duration: float = None, dtype=np.float32) -> tuple[np.ndarray, int]:
"""
Load an audio buffer using soundfile.
Args:
path (str | Path): The path to the audio file.
offset (float): The offset in seconds to start reading the file.
duration (float): The duration in seconds to read from the file.
dtype (np.float32): The data type of the audio buffer.
Returns:
tuple: A tuple containing the audio buffer and the sample rate.
"""
import soundfile as sf
if isinstance(path, sf.SoundFile):
# If the user passed an existing soundfile object,
# we can use it directly
context = path
else:
# Otherwise, create the soundfile object
context = sf.SoundFile(path)
with context as sf_desc:
sr_native = sf_desc.samplerate
if offset:
# Seek to the start of the target read
sf_desc.seek(int(offset * sr_native))
if duration is not None:
frame_duration = int(duration * sr_native)
else:
frame_duration = -1
# Load the target number of frames, and transpose to match librosa form
y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T
return y, sr_native
def audioread_load(path: str | Path, offset: float = 0.0, duration: float = None, dtype=np.float32) -> tuple[np.ndarray, int]:
"""
This loads one block at a time, and then concatenates the results.
Args:
path (str | Path): The path to the audio file.
offset (float): The offset in seconds to start reading the file.
duration (float): The duration in seconds to read from the file.
dtype (np.float32): The data type of the audio buffer.
Returns:
tuple: A tuple containing the audio buffer and the sample rate.
"""
y = []
app_logger.debug(f"reading audio file at path:{path} ...")
with audioread.audio_open(path) as input_file:
sr_native = input_file.samplerate
n_channels = input_file.channels
s_start = calc_start_end(sr_native, offset, n_channels)
if duration is None:
s_end = np.inf
else:
duration = calc_start_end(sr_native, duration, n_channels)
s_end = duration + s_start
n = 0
for frame in input_file:
frame = buf_to_float(frame, dtype=dtype)
n_prev = n
n = n + len(frame)
if n < s_start:
# offset is after the current frame
# keep reading
continue
if s_end < n_prev:
# we're off the end. stop reading
break
if s_end < n:
# the end is in this frame. crop.
frame = frame[: s_end - n_prev]
if n_prev <= s_start <= n:
# beginning is in this frame
frame = frame[(s_start - n_prev):]
# tack on the current frame
y.append(frame)
if y:
y = np.concatenate(y)
if n_channels > 1:
y = y.reshape((-1, n_channels)).T
else:
y = np.empty(0, dtype=dtype)
return y, sr_native
# From Librosa
def buf_to_float(x: np.ndarray, n_bytes: int = 2, dtype: np.float32 = np.float32) -> np.ndarray:
"""Convert an integer buffer to floating point values.
This is primarily useful when loading integer-valued wav data
into numpy arrays.
Parameters
----------
x : np.ndarray [dtype=int]
The integer-valued data buffer
n_bytes : int [1, 2, 4]
The number of bytes per sample in ``x``
dtype : numeric type
The target output type (default: 32-bit float)
Returns
-------
x_float : np.ndarray [dtype=float]
The input data buffer cast to floating point
"""
# Invert the scale of the data
scale = 1.0 / float(1 << ((8 * n_bytes) - 1))
# Construct the format string
fmt = "<i{:d}".format(n_bytes)
# Rescale and format the data buffer
return scale * np.frombuffer(x, fmt).astype(dtype)