Spaces:
Sleeping
Sleeping
Update service sentiment_analysis_service
Browse files
src/expon/presentation/domain/services/sentiment_analysis_service.py
CHANGED
@@ -2,28 +2,18 @@ import os
|
|
2 |
from transformers import pipeline
|
3 |
from typing import Dict
|
4 |
|
5 |
-
# 👇 Redirigir el caché de Hugging Face a /tmp
|
6 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers"
|
7 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
8 |
|
9 |
class SentimentAnalysisService:
|
10 |
def __init__(self):
|
11 |
try:
|
12 |
-
print("[LOG] Cargando
|
13 |
-
token = os.getenv("HUGGINGFACE_TOKEN")
|
14 |
-
if not token:
|
15 |
-
raise ValueError("No se encontró HUGGINGFACE_TOKEN en variables de entorno")
|
16 |
-
except Exception as e:
|
17 |
-
print("[ERROR] Token inválido:", e)
|
18 |
-
raise
|
19 |
-
|
20 |
-
try:
|
21 |
-
print("[LOG] Cargando pipeline...")
|
22 |
self.pipeline = pipeline(
|
23 |
"text-classification",
|
24 |
-
model="
|
25 |
-
top_k=1
|
26 |
-
use_auth_token=token # 👈 Se usa directamente el token aquí
|
27 |
)
|
28 |
print("[LOG] Pipeline cargado correctamente.")
|
29 |
except Exception as e:
|
@@ -35,7 +25,7 @@ class SentimentAnalysisService:
|
|
35 |
try:
|
36 |
result = self.pipeline(transcript)[0]
|
37 |
print("[LOG] Resultado del modelo:", result)
|
38 |
-
label = result['label'].lower()
|
39 |
score = result['score']
|
40 |
except Exception as e:
|
41 |
print("[ERROR] Falló la predicción:", e)
|
@@ -45,14 +35,13 @@ class SentimentAnalysisService:
|
|
45 |
"confidence": 0.0
|
46 |
}
|
47 |
|
|
|
48 |
emotion_mapping = {
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"amor": "conectado",
|
55 |
-
"sorpresa": "sorprendido",
|
56 |
}
|
57 |
|
58 |
mapped_emotion = emotion_mapping.get(label, "desconocido")
|
@@ -62,5 +51,5 @@ class SentimentAnalysisService:
|
|
62 |
"emotion_probabilities": {
|
63 |
mapped_emotion: 1.0
|
64 |
},
|
65 |
-
"confidence":
|
66 |
}
|
|
|
2 |
from transformers import pipeline
|
3 |
from typing import Dict
|
4 |
|
5 |
+
# 👇 Redirigir el caché de Hugging Face a /tmp para compatibilidad en Hugging Face Spaces
|
6 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers"
|
7 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
8 |
|
9 |
class SentimentAnalysisService:
|
10 |
def __init__(self):
|
11 |
try:
|
12 |
+
print("[LOG] Cargando pipeline con modelo público...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
self.pipeline = pipeline(
|
14 |
"text-classification",
|
15 |
+
model="nlptown/bert-base-multilingual-uncased-sentiment", # ✅ modelo público
|
16 |
+
top_k=1
|
|
|
17 |
)
|
18 |
print("[LOG] Pipeline cargado correctamente.")
|
19 |
except Exception as e:
|
|
|
25 |
try:
|
26 |
result = self.pipeline(transcript)[0]
|
27 |
print("[LOG] Resultado del modelo:", result)
|
28 |
+
label = result['label'].lower() # Ejemplo: "1 star", "5 stars"
|
29 |
score = result['score']
|
30 |
except Exception as e:
|
31 |
print("[ERROR] Falló la predicción:", e)
|
|
|
35 |
"confidence": 0.0
|
36 |
}
|
37 |
|
38 |
+
# Mapeo muy simple de estrellas a emociones (puedes personalizar esto más)
|
39 |
emotion_mapping = {
|
40 |
+
"1 star": "frustrado",
|
41 |
+
"2 stars": "desmotivado",
|
42 |
+
"3 stars": "neutro",
|
43 |
+
"4 stars": "motivado",
|
44 |
+
"5 stars": "entusiasta"
|
|
|
|
|
45 |
}
|
46 |
|
47 |
mapped_emotion = emotion_mapping.get(label, "desconocido")
|
|
|
51 |
"emotion_probabilities": {
|
52 |
mapped_emotion: 1.0
|
53 |
},
|
54 |
+
"confidence": round(score, 2)
|
55 |
}
|