Spaces:
Running
Running
import torch | |
from transformers import AutoModelForSemanticSegmentation, SegformerImageProcessor | |
from huggingface_hub import HfApi, create_repo, upload_file, model_info | |
import os | |
from dotenv import load_dotenv | |
from pathlib import Path | |
import logging | |
import argparse | |
import tempfile | |
# Setup logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Load environment variables | |
load_dotenv() | |
class ConfigurationError(Exception): | |
"""Raised when required environment variables are missing""" | |
pass | |
class HFOnnxConverter: | |
def __init__(self, token=None): | |
# Load configuration from environment | |
self.token = token or os.getenv("HF_TOKEN") | |
self.model_cache_dir = os.getenv("MODEL_CACHE_DIR") | |
self.onnx_output_dir = os.getenv("ONNX_OUTPUT_DIR") | |
# Validate configuration | |
if not self.token: | |
raise ConfigurationError("HF_TOKEN is required in environment variables") | |
# Create directories if they don't exist | |
for directory in [self.model_cache_dir, self.onnx_output_dir]: | |
if directory: | |
Path(directory).mkdir(parents=True, exist_ok=True) | |
self.api = HfApi() | |
# Login to Hugging Face | |
try: | |
self.api.whoami(token=self.token) | |
logger.info("Successfully authenticated with Hugging Face") | |
except Exception as e: | |
raise ConfigurationError(f"Failed to authenticate with Hugging Face: {str(e)}") | |
def setup_repository(self, repo_name: str) -> str: | |
"""Create or get repository on Hugging Face Hub""" | |
try: | |
create_repo( | |
repo_name, | |
token=self.token, | |
private=False, | |
exist_ok=True | |
) | |
logger.info(f"Repository {repo_name} is ready") | |
return repo_name | |
except Exception as e: | |
logger.error(f"Error setting up repository: {e}") | |
raise | |
def verify_model_exists(self, model_name: str) -> bool: | |
"""Verify if the model exists and is accessible""" | |
try: | |
model_info(model_name, token=self.token) | |
return True | |
except Exception as e: | |
logger.error(f"Model verification failed: {str(e)}") | |
return False | |
def convert_and_push(self, source_model: str, target_repo: str): | |
"""Convert model to ONNX and push to Hugging Face Hub""" | |
try: | |
# Verify model exists and is accessible | |
if not self.verify_model_exists(source_model): | |
raise ValueError(f"Model {source_model} is not accessible. Check if the model exists and you have proper permissions.") | |
# Use model cache directory if specified | |
model_kwargs = { | |
"token": self.token | |
} | |
if self.model_cache_dir: | |
model_kwargs["cache_dir"] = self.model_cache_dir | |
# Create working directory | |
working_dir = self.onnx_output_dir or tempfile.mkdtemp() | |
tmp_path = Path(working_dir) / f"{target_repo.split('/')[-1]}.onnx" | |
logger.info(f"Loading model {source_model}...") | |
model = AutoModelForSemanticSegmentation.from_pretrained( | |
source_model, | |
**model_kwargs | |
) | |
processor = SegformerImageProcessor.from_pretrained( | |
source_model, | |
**model_kwargs | |
) | |
# Set model to evaluation mode | |
model.eval() | |
# Create dummy input | |
dummy_input = processor( | |
images=torch.zeros(1, 3, 224, 224), | |
return_tensors="pt" | |
) | |
# Export to ONNX | |
logger.info(f"Converting to ONNX format... Output path: {tmp_path}") | |
torch.onnx.export( | |
model, | |
(dummy_input['pixel_values'],), | |
tmp_path, | |
input_names=['input'], | |
output_names=['output'], | |
dynamic_axes={ | |
'input': {0: 'batch_size', 2: 'height', 3: 'width'}, | |
'output': {0: 'batch_size'} | |
}, | |
opset_version=12, | |
do_constant_folding=True | |
) | |
# Create model card with environment info | |
model_card = f"""--- | |
base_model: {source_model} | |
tags: | |
- onnx | |
- semantic-segmentation | |
--- | |
# ONNX Model converted from {source_model} | |
This is an ONNX version of the model {source_model}, converted automatically. | |
## Model Information | |
- Original Model: {source_model} | |
- ONNX Opset Version: 12 | |
- Input Shape: Dynamic (batch_size, 3, height, width) | |
## Usage | |
```python | |
import onnxruntime as ort | |
import numpy as np | |
# Load ONNX model | |
session = ort.InferenceSession("model.onnx") | |
# Prepare input | |
input_data = np.zeros((1, 3, 224, 224), dtype=np.float32) | |
# Run inference | |
outputs = session.run(None, {{"input": input_data}}) | |
``` | |
""" | |
# Save model card | |
readme_path = Path(working_dir) / "README.md" | |
with open(readme_path, "w") as f: | |
f.write(model_card) | |
# Push files to hub | |
logger.info(f"Pushing files to {target_repo}...") | |
self.api.upload_file( | |
path_or_fileobj=str(tmp_path), | |
path_in_repo="model.onnx", | |
repo_id=target_repo, | |
token=self.token | |
) | |
self.api.upload_file( | |
path_or_fileobj=str(readme_path), | |
path_in_repo="README.md", | |
repo_id=target_repo, | |
token=self.token | |
) | |
logger.info(f"Successfully pushed ONNX model to {target_repo}") | |
return True | |
except Exception as e: | |
logger.error(f"Error during conversion and upload: {e}") | |
return False | |
def main(): | |
parser = argparse.ArgumentParser(description='Convert and push model to ONNX format on Hugging Face Hub') | |
parser.add_argument('--source', type=str, required=True, | |
help='Source model name (e.g., "sayeed99/segformer-b3-fashion")') | |
parser.add_argument('--target', type=str, required=True, | |
help='Target repository name (e.g., "your-username/model-name-onnx")') | |
parser.add_argument('--token', type=str, help='Hugging Face token (optional)') | |
args = parser.parse_args() | |
converter = HFOnnxConverter(token=args.token) | |
converter.setup_repository(args.target) | |
success = converter.convert_and_push(args.source, args.target) | |
if not success: | |
exit(1) | |
if __name__ == "__main__": | |
main() | |