Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import subprocess | |
import os | |
import shutil | |
from pathlib import Path | |
from PIL import Image, ImageDraw | |
import spaces | |
# ------------------------------------------------------------------ | |
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE | |
# ------------------------------------------------------------------ | |
INPUT_DIR = "samples" | |
OUTPUT_DIR = "inference_results/coz_vlmprompt" | |
# ------------------------------------------------------------------ | |
# HELPER: Resize & center-crop to 512, preserving aspect ratio | |
# ------------------------------------------------------------------ | |
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image: | |
""" | |
Resize the input PIL image so that its shorter side == `size`, | |
then center-crop to exactly (size x size). | |
""" | |
w, h = img.size | |
scale = size / min(w, h) | |
new_w, new_h = int(w * scale), int(h * scale) | |
img = img.resize((new_w, new_h), Image.LANCZOS) | |
left = (new_w - size) // 2 | |
top = (new_h - size) // 2 | |
return img.crop((left, top, left + size, top + size)) | |
# ------------------------------------------------------------------ | |
# HELPER: Draw four concentric, centered rectangles on a 512Γ512 image | |
# ------------------------------------------------------------------ | |
def make_preview_with_boxes(image_path: str, scale_option: str) -> Image.Image: | |
""" | |
1) Open the uploaded image from disk. | |
2) Resize & center-crop it to exactly 512Γ512. | |
3) Depending on scale_option ("1x","2x","4x"), compute four rectangle sizes: | |
- "1x": [512, 512, 512, 512] | |
- "2x": [256, 128, 64, 32] | |
- "4x": [128, 64, 32, 16] | |
4) Draw each of those four rectangles (outline only), all centered. | |
5) Return the modified PIL image. | |
""" | |
try: | |
orig = Image.open(image_path).convert("RGB") | |
except Exception as e: | |
# If something fails, return a plain 512Γ512 gray image as fallback | |
fallback = Image.new("RGB", (512, 512), (200, 200, 200)) | |
draw = ImageDraw.Draw(fallback) | |
draw.text((20, 20), f"Error:\n{e}", fill="red") | |
return fallback | |
# 1. Resize & center-crop to 512Γ512 | |
base = resize_and_center_crop(orig, 512) # now `base.size == (512,512)` | |
# 2. Determine the four box sizes | |
scale_int = int(scale_option.replace("x", "")) # e.g. "2x" -> 2 | |
if scale_int == 1: | |
sizes = [512, 512, 512, 512] | |
else: | |
# For scale=2: sizes = [512//2, 512//(2*2), 512//(2*4), 512//(2*8)] -> [256,128,64,32] | |
# For scale=4: sizes = [512//4, 512//(4*2), 512//(4*4), 512//(4*8)] -> [128,64,32,16] | |
sizes = [512 // (scale_int * (2 ** i)) for i in range(4)] | |
draw = ImageDraw.Draw(base) | |
# 3. Outline color cycle (you can change these or use just one color) | |
colors = ["red", "lime", "cyan", "yellow"] | |
width = 3 # thickness of each rectangleβs outline | |
for idx, s in enumerate(sizes): | |
# Compute top-left corner so that box is centered in 512Γ512 | |
x0 = (512 - s) // 2 | |
y0 = (512 - s) // 2 | |
x1 = x0 + s | |
y1 = y0 + s | |
draw.rectangle([(x0, y0), (x1, y1)], outline=colors[idx % len(colors)], width=width) | |
return base | |
# ------------------------------------------------------------------ | |
# HELPER FUNCTIONS FOR INFERENCE & CAPTION (unchanged from your original) | |
# ------------------------------------------------------------------ | |
def run_with_upload(uploaded_image_path, upscale_option): | |
""" | |
1) Clear INPUT_DIR | |
2) Save the uploaded file as input.png in INPUT_DIR | |
3) Read `upscale_option` (e.g. "1x", "2x", "4x") β turn it into "1","2","4" | |
4) Call inference_coz.py with `--upscale <that_value>` | |
5) Return the FOUR outputβPNG fileβpaths as a Python list, so that Gradio's Gallery | |
can display them. | |
""" | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# (Copyβpaste exactly your existing code here; no changes needed) | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
os.makedirs(INPUT_DIR, exist_ok=True) | |
for fn in os.listdir(INPUT_DIR): | |
full_path = os.path.join(INPUT_DIR, fn) | |
try: | |
if os.path.isfile(full_path) or os.path.islink(full_path): | |
os.remove(full_path) | |
elif os.path.isdir(full_path): | |
shutil.rmtree(full_path) | |
except Exception as e: | |
print(f"Warning: could not delete {full_path}: {e}") | |
if uploaded_image_path is None: | |
return [] | |
try: | |
pil_img = Image.open(uploaded_image_path).convert("RGB") | |
except Exception as e: | |
print(f"Error: could not open uploaded image: {e}") | |
return [] | |
save_path = Path(INPUT_DIR) / "input.png" | |
try: | |
pil_img.save(save_path, format="PNG") | |
except Exception as e: | |
print(f"Error: could not save as PNG: {e}") | |
return [] | |
upscale_value = upscale_option.replace("x", "") # e.g. "2x" β "2" | |
cmd = [ | |
"python", "inference_coz.py", | |
"-i", INPUT_DIR, | |
"-o", OUTPUT_DIR, | |
"--rec_type", "recursive_multiscale", | |
"--prompt_type", "vlm", | |
"--upscale", upscale_value, | |
"--lora_path", "ckpt/SR_LoRA/model_20001.pkl", | |
"--vae_path", "ckpt/SR_VAE/vae_encoder_20001.pt", | |
"--pretrained_model_name_or_path", "stabilityai/stable-diffusion-3-medium-diffusers", | |
"--ram_ft_path", "ckpt/DAPE/DAPE.pth", | |
"--ram_path", "ckpt/RAM/ram_swin_large_14m.pth" | |
] | |
try: | |
subprocess.run(cmd, check=True) | |
except subprocess.CalledProcessError as err: | |
print("Inference failed:", err) | |
return [] | |
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input") | |
expected_files = [ | |
os.path.join(per_sample_dir, f"{i}.png") | |
for i in range(1, 5) | |
] | |
for fp in expected_files: | |
if not os.path.isfile(fp): | |
print(f"Warning: expected file not found: {fp}") | |
return [] | |
return expected_files | |
def get_caption(src_gallery, evt: gr.SelectData): | |
""" | |
Given a clickedβon image in the gallery, read the corresponding .txt in | |
.../per-sample/input/txt and return its contents. | |
""" | |
if not src_gallery or not os.path.isfile(src_gallery[evt.index][0]): | |
return "No caption available." | |
selected_image_path = src_gallery[evt.index][0] | |
base = os.path.basename(selected_image_path) # e.g. "2.png" | |
stem = os.path.splitext(base)[0] # e.g. "2" | |
txt_folder = os.path.join(OUTPUT_DIR, "per-sample", "input", "txt") | |
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt") | |
if not os.path.isfile(txt_path): | |
return f"Caption file not found: {int(stem) - 1}.txt" | |
try: | |
with open(txt_path, "r", encoding="utf-8") as f: | |
caption = f.read().strip() | |
return caption if caption else "(Caption file is empty.)" | |
except Exception as e: | |
return f"Error reading caption: {e}" | |
# ------------------------------------------------------------------ | |
# BUILD THE GRADIO INTERFACE (with updated callbacks) | |
# ------------------------------------------------------------------ | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center;"> | |
<h1>Chain-of-Zoom</h1> | |
<p style="font-size:16px;">Extreme Super-Resolution via Scale Autoregression and Preference Alignment</p> | |
</div> | |
<br> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href="https://github.com/bryanswkim/Chain-of-Zoom"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
</div> | |
""" | |
) | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
with gr.Column(): | |
# 1) Image upload component | |
upload_image = gr.Image( | |
label="Upload your input image", | |
type="filepath" | |
) | |
# 2) Radio for choosing 1Γ / 2Γ / 4Γ upscaling | |
upscale_radio = gr.Radio( | |
choices=["1x", "2x", "4x"], | |
value="2x", | |
show_label=False | |
) | |
# 3) Button to launch inference | |
run_button = gr.Button("Chain-of-Zoom it") | |
# 4) Show the 512Γ512 preview with four centered rectangles | |
preview_with_box = gr.Image( | |
label="Preview (512Γ512 with centered boxes)", | |
type="pil", # weβll return a PIL.Image from our function | |
interactive=False | |
) | |
with gr.Column(): | |
# 5) Gallery to display multiple output images | |
output_gallery = gr.Gallery( | |
label="Inference Results", | |
show_label=True, | |
elem_id="gallery", | |
columns=[2], rows=[2] | |
) | |
# 6) Textbox under the gallery for showing captions | |
caption_text = gr.Textbox( | |
label="Caption", | |
lines=4, | |
placeholder="Click on any image above to see its caption here." | |
) | |
# ------------------------------------------------------------------ | |
# CALLBACK #1: Whenever the user uploads or changes the radio, update preview | |
# ------------------------------------------------------------------ | |
def update_preview(img_path, scale_opt): | |
""" | |
If there's no image uploaded yet, return None (Gradio will show blank). | |
Otherwise, draw the resized 512Γ512 + four boxes and return it. | |
""" | |
if img_path is None: | |
return None | |
return make_preview_with_boxes(img_path, scale_opt) | |
# When the user uploads a new file: | |
upload_image.change( | |
fn=update_preview, | |
inputs=[upload_image, upscale_radio], | |
outputs=[preview_with_box] | |
) | |
# Also trigger preview redraw if they switch 1Γ/2Γ/4Γ after uploading: | |
upscale_radio.change( | |
fn=update_preview, | |
inputs=[upload_image, upscale_radio], | |
outputs=[preview_with_box] | |
) | |
# ------------------------------------------------------------------ | |
# CALLBACK #2: When βChain-of-Zoom itβ is clicked, run inference | |
# ------------------------------------------------------------------ | |
run_button.click( | |
fn=run_with_upload, | |
inputs=[upload_image, upscale_radio], | |
outputs=[output_gallery] | |
) | |
# ------------------------------------------------------------------ | |
# CALLBACK #3: When an image in the gallery is clicked, show its caption | |
# ------------------------------------------------------------------ | |
output_gallery.select( | |
fn=get_caption, | |
inputs=[output_gallery], | |
outputs=[caption_text] | |
) | |
# ------------------------------------------------------------------ | |
# START THE GRADIO SERVER | |
# ------------------------------------------------------------------ | |
demo.launch(share=True) | |