File size: 21,377 Bytes
4479f79 41cddf4 56cc2e6 4479f79 7c1b432 4479f79 9cecb83 2014baf f7eba29 ba1b0fc cebd833 42876b6 f7eba29 4d45213 cebd833 70c896d 4d45213 70c896d cebd833 1542170 cebd833 4479f79 586bceb 4479f79 586bceb 4479f79 56cc2e6 4479f79 56cc2e6 4479f79 2f7b580 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 cebd833 4479f79 2f7b580 4479f79 2399b6c 0dbaecc 2399b6c 4479f79 2399b6c a769027 2399b6c a769027 2399b6c a769027 2399b6c a769027 2399b6c a23408c 2399b6c a23408c 2399b6c 2f7b580 2399b6c 2f7b580 2399b6c 2f7b580 2399b6c 2f7b580 2399b6c 42876b6 2910919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# STEP 1: Very first thing in the file: force spawn
import multiprocessing as mp
mp.set_start_method("spawn", force=True)
import spaces
import tempfile
from PIL import Image
import gradio as gr
import string
import random, time, math
import os
os.environ["NCCL_P2P_DISABLE"]="1"
os.environ["NCCL_IB_DISABLE"]="1"
import src.flux.generate
from src.flux.generate import generate_from_test_sample, seed_everything
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora
from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
from eval.tools.face_id import FaceID
from eval.tools.florence_sam import ObjectDetector
import shutil
import yaml
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import torch
# # FLUX.1-dev
# snapshot_download(
# repo_id="black-forest-labs/FLUX.1-dev",
# local_dir="/data/checkpoints/FLUX.1-dev",
# local_dir_use_symlinks=False
# )
# # Florence-2-large
# snapshot_download(
# repo_id="microsoft/Florence-2-large",
# local_dir="/data/checkpoints/Florence-2-large",
# local_dir_use_symlinks=False
# )
# # CLIP ViT Large
# snapshot_download(
# repo_id="openai/clip-vit-large-patch14",
# local_dir="/data/checkpoints/clip-vit-large-patch14",
# local_dir_use_symlinks=False
# )
# # DINO ViT-s16
# snapshot_download(
# repo_id="facebook/dino-vits16",
# local_dir="/data/checkpoints/dino-vits16",
# local_dir_use_symlinks=False
# )
# # mPLUG Visual Question Answering
# snapshot_download(
# repo_id="xingjianleng/mplug_visual-question-answering_coco_large_en",
# local_dir="/data/checkpoints/mplug_visual-question-answering_coco_large_en",
# local_dir_use_symlinks=False
# )
# # XVerse
# snapshot_download(
# repo_id="ByteDance/XVerse",
# local_dir="/data/checkpoints/XVerse",
# local_dir_use_symlinks=False
# )
# hf_hub_download(
# repo_id="facebook/sam2.1-hiera-large",
# local_dir="/data/checkpoints/",
# filename="sam2.1_hiera_large.pt",
# )
os.environ["FLORENCE2_MODEL_PATH"] = "/data/checkpoints/Florence-2-large"
os.environ["SAM2_MODEL_PATH"] = "/data/checkpoints/sam2.1_hiera_large.pt"
os.environ["FACE_ID_MODEL_PATH"] = "./checkpoints/model_ir_se50.pth"
os.environ["CLIP_MODEL_PATH"] = "/data/checkpoints/clip-vit-large-patch14"
os.environ["FLUX_MODEL_PATH"] = "/data/checkpoints/FLUX.1-dev"
os.environ["DPG_VQA_MODEL_PATH"] = "/data/checkpoints/mplug_visual-question-answering_coco_large_en"
os.environ["DINO_MODEL_PATH"] = "/data/checkpoints/dino-vits16"
dtype = torch.bfloat16
device = "cuda"
config_path = "train/config/XVerse_config_demo.yaml"
config = config_train = get_train_config(config_path)
# config["model"]["dit_quant"] = "int8-quanto"
config["model"]["use_dit_lora"] = False
model = CustomFluxPipeline(
config, device, torch_dtype=dtype,
)
model.pipe.set_progress_bar_config(leave=False)
face_model = FaceID(device)
detector = ObjectDetector(device)
config = get_train_config(config_path)
model.config = config
run_mode = "mod_only" # orig_only, mod_only, both
store_attn_map = False
run_name = time.strftime("%m%d-%H%M")
num_inputs = 6
ckpt_root = "/data/checkpoints/XVerse"
model.clear_modulation_adapters()
model.pipe.unload_lora_weights()
if not os.path.exists(ckpt_root):
print("Checkpoint root does not exist.")
modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False)
model.add_modulation_adapter(modulation_adapter)
if config["model"]["use_dit_lora"]:
load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False)
vae_skip_iter = None
attn_skip_iter = 0
def clear_images():
return [None, ]*num_inputs
@spaces.GPU()
def det_seg_img(image, label):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
indices = list(range(len(instance_result_dict["instance_images"])))
ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
return ins
@spaces.GPU()
def crop_face_img(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
# image = resize_keep_aspect_ratio(image, 1024)
image = pad_to_square(image).resize((2048, 2048))
face_bbox = face_model.detect(
(pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4
)[0]
face = image.crop(face_bbox)
return face
@spaces.GPU()
def vlm_img_caption(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
try:
caption = detector.detector.caption(image, "<CAPTION>").strip()
if caption.endswith("."):
caption = caption[:-1]
except Exception as e:
print(e)
caption = ""
caption = caption.lower()
return caption
def generate_random_string(length=4):
letters = string.ascii_letters # 包含大小写字母的字符串
result_str = ''.join(random.choice(letters) for i in range(length))
return result_str
def resize_keep_aspect_ratio(pil_image, target_size=1024):
H, W = pil_image.height, pil_image.width
target_area = target_size * target_size
current_area = H * W
scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area)
new_H = int(round(H * scaling_factor))
new_W = int(round(W * scaling_factor))
return pil_image.resize((new_W, new_H))
@spaces.GPU()
def generate_image(
prompt,
cond_size, target_height, target_width,
seed,
vae_skip_iter, control_weight_lambda,
double_attention, # 新增参数
single_attention, # 新增参数
ip_scale,
latent_sblora_scale_str, vae_lora_scale,
indexs, # 新增参数
*images_captions_faces, # Combine all unpacked arguments into one tuple
):
torch.cuda.empty_cache()
num_images = 1
# Determine the number of images, captions, and faces based on the indexs length
images = list(images_captions_faces[:num_inputs])
captions = list(images_captions_faces[num_inputs:2 * num_inputs])
idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])
images = [images[i] for i in indexs]
captions = [captions[i] for i in indexs]
idips_checkboxes = [idips_checkboxes[i] for i in indexs]
print(f"Length of images: {len(images)}")
print(f"Length of captions: {len(captions)}")
print(f"Indexs: {indexs}")
print(f"Control weight lambda: {control_weight_lambda}")
if control_weight_lambda != "no":
parts = control_weight_lambda.split(',')
new_parts = []
for part in parts:
if ':' in part:
left, right = part.split(':')
values = right.split('/')
# 保存整体值
global_value = values[0]
id_value = values[1]
ip_value = values[2]
new_values = [global_value]
for is_id in idips_checkboxes:
if is_id:
new_values.append(id_value)
else:
new_values.append(ip_value)
new_part = f"{left}:{('/'.join(new_values))}"
new_parts.append(new_part)
else:
new_parts.append(part)
control_weight_lambda = ','.join(new_parts)
print(f"Control weight lambda: {control_weight_lambda}")
src_inputs = []
use_words = []
cur_run_time = time.strftime("%m%d-%H%M%S")
tmp_dir_root = f"tmp/gradio_demo/{run_name}"
temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}"
os.makedirs(temp_dir, exist_ok=True)
print(f"Temporary directory created: {temp_dir}")
for i, (image_path, caption) in enumerate(zip(images, captions)):
if image_path:
if caption.startswith("a ") or caption.startswith("A "):
word = caption[2:]
else:
word = caption
if f"ENT{i+1}" in prompt:
prompt = prompt.replace(f"ENT{i+1}", caption)
image = resize_keep_aspect_ratio(Image.open(image_path), 768)
save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
image.save(save_path)
input_image_path = save_path
src_inputs.append(
{
"image_path": input_image_path,
"caption": caption
}
)
use_words.append((i, word, word))
test_sample = dict(
input_images=[], position_delta=[0, -32],
prompt=prompt,
target_height=target_height,
target_width=target_width,
seed=seed,
cond_size=cond_size,
vae_skip_iter=vae_skip_iter,
lora_scale=ip_scale,
control_weight_lambda=control_weight_lambda,
latent_sblora_scale=latent_sblora_scale_str,
condition_sblora_scale=vae_lora_scale,
double_attention=double_attention,
single_attention=single_attention,
)
if len(src_inputs) > 0:
test_sample["modulation"] = [
dict(
type="adapter",
src_inputs=src_inputs,
use_words=use_words,
),
]
json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
assert single_attention == True
target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
print(test_sample)
model.config["train"]["dataset"]["val_condition_size"] = cond_size
model.config["train"]["dataset"]["val_target_size"] = target_size
if control_weight_lambda == "no":
control_weight_lambda = None
if vae_skip_iter == "no":
vae_skip_iter = None
use_condition_sblora_control = True
use_latent_sblora_control = True
image = generate_from_test_sample(
test_sample, model.pipe, model.config,
num_images=num_images,
target_height=target_height,
target_width=target_width,
seed=seed,
store_attn_map=store_attn_map,
vae_skip_iter=vae_skip_iter, # 使用新的参数
control_weight_lambda=control_weight_lambda, # 传递新的参数
double_attention=double_attention, # 新增参数
single_attention=single_attention, # 新增参数
ip_scale=ip_scale,
use_latent_sblora_control=use_latent_sblora_control,
latent_sblora_scale=latent_sblora_scale_str,
use_condition_sblora_control=use_condition_sblora_control,
condition_sblora_scale=vae_lora_scale,
)
if isinstance(image, list):
num_cols = 2
num_rows = int(math.ceil(num_images / num_cols))
image = image_grid(image, num_rows, num_cols)
save_path = f"{temp_dir}/tmp_result.png"
image.save(save_path)
return image
def create_image_input(index, open=True, indexs_state=None):
accordion_state = gr.State(open)
with gr.Column():
with gr.Accordion(f"Input Image {index + 1}", open=accordion_state.value) as accordion:
image = gr.Image(type="filepath", label=f"Image {index + 1}")
caption = gr.Textbox(label=f"Caption {index + 1}", value="")
id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
with gr.Row():
vlm_btn = gr.Button("Auto Caption")
det_btn = gr.Button("Det & Seg")
face_btn = gr.Button("Crop Face")
accordion.expand(
inputs=[indexs_state],
fn = lambda x: update_inputs(True, index, x),
outputs=[indexs_state, accordion_state],
)
accordion.collapse(
inputs=[indexs_state],
fn = lambda x: update_inputs(False, index, x),
outputs=[indexs_state, accordion_state],
)
return image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox
def merge_instances(orig_img, indices, ins_bboxes, ins_images):
orig_image_width, orig_image_height = orig_img.width, orig_img.height
final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
bboxes = []
for i in indices:
bbox = np.array(ins_bboxes[i], dtype=int).tolist()
bboxes.append(bbox)
img = cv2pil(ins_images[i])
mask = (np.array(img)[..., :3] != 255).any(axis=-1)
mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
final_img.paste(img, (bbox[0], bbox[1]), mask)
bbox = merge_bboxes(bboxes)
img = final_img.crop(bbox)
return img, bbox
def change_accordion(at: bool, index: int, state: list):
print(at, state)
indexs = state
if at:
if index not in indexs:
indexs.append(index)
else:
if index in indexs:
indexs.remove(index)
# 确保 indexs 是有序的
indexs.sort()
print(indexs)
return gr.Accordion(open=at), indexs
def update_inputs(is_open, index, state: list):
indexs = state
if is_open:
if index not in indexs:
indexs.append(index)
else:
if index in indexs:
indexs.remove(index)
# 确保 indexs 是有序的
indexs.sort()
print(indexs)
return indexs, is_open
if __name__ == "__main__":
with gr.Blocks() as demo:
indexs_state = gr.State([0, 1]) # 添加状态来存储 indexs
gr.Markdown("### XVerse Demo")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="")
with gr.Accordion("Open for More!", open=False):
with gr.Row():
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
with gr.Row():
weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
with gr.Row():
ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
with gr.Row():
vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
with gr.Row():
weight_id_ip_str = gr.Textbox(
value="0-1:1/3/5",
label="weight_id_ip_str",
interactive=False, visible=False
)
weight_id.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
weight_ip.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
vae_skip_iter = gr.Textbox(
value="0-0.05:1,0.8-1:1",
label="vae_skip_iter",
interactive=False, visible=False
)
vae_skip_iter_s1.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
vae_skip_iter_s2.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
with gr.Row():
db_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="db_latent_lora_scale_str",
interactive=False, visible=False
)
sb_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="sb_latent_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale_str = gr.Textbox(
value="0-1:1.3",
label="vae_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale.change(
lambda s: f"0-1:{s}",
inputs=vae_lora_scale,
outputs=vae_lora_scale_str
)
ip_scale_str.change(
lambda s: [f"0-1:{s}", f"0-1:{s}"],
inputs=ip_scale_str,
outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
)
with gr.Row():
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
clear_btn = gr.Button("清空输入图像")
with gr.Row():
for i in range(num_inputs):
image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indexs_state=indexs_state)
images.append(image)
idip_checkboxes.append(id_ip_checkbox)
captions.append(caption)
face_btns.append(face_btn)
det_btns.append(det_btn)
vlm_btns.append(vlm_btn)
accordion_states.append(accordion_state)
accordions.append(accordion)
with gr.Column():
output = gr.Image(label="生成的图像")
seed = gr.Number(value=42, label="Seed", info="")
gen_btn = gr.Button("生成图像")
gen_btn.click(
generate_image,
inputs=[
prompt, cond_size, target_height, target_width, seed,
vae_skip_iter, weight_id_ip_str,
double_attention, single_attention,
db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
indexs_state, # 传递 indexs 状态
# *images,
# *captions,
# *idip_checkboxes,
],
outputs=output
)
# 修改清空函数的输出参数
clear_btn.click(clear_images, outputs=images)
# 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件
for i in range(num_inputs):
face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
accordion_states[i].change(fn=lambda x, state, index=i: change_accordion(x, index, state), inputs=[accordion_states[i], indexs_state], outputs=[accordions[i], indexs_state])
demo.queue()
demo.launch() |