XVerse / src /flux /generate.py
alexnasa's picture
Update src/flux/generate.py
205da37 verified
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import yaml, os
from PIL import Image
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from src.flux.transformer import tranformer_forward
from src.flux.condition import Condition
from diffusers.pipelines.flux.pipeline_flux import (
FluxPipelineOutput,
calculate_shift,
retrieve_timesteps,
np,
)
from src.flux.pipeline_tools import (
encode_prompt_with_clip_t5, tokenize_t5_prompt, clear_attn_maps, encode_vae_images
)
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, decode_vae_images, \
save_attention_maps, gather_attn_maps, clear_attn_maps, load_dit_lora, quantization
from src.utils.data_utils import pad_to_square, pad_to_target, pil2tensor, get_closest_ratio, get_aspect_ratios
from src.utils.modulation_utils import get_word_index, unpad_input_ids
def get_config(config_path: str = None):
config_path = config_path or os.environ.get("XFL_CONFIG")
if not config_path:
return {}
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config
def prepare_params(
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: int = 8,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
verbose: bool = False,
**kwargs: dict,
):
return (
prompt,
prompt_2,
height,
width,
num_inference_steps,
timesteps,
guidance_scale,
num_images_per_prompt,
generator,
latents,
prompt_embeds,
pooled_prompt_embeds,
output_type,
return_dict,
joint_attention_kwargs,
callback_on_step_end,
callback_on_step_end_tensor_inputs,
max_sequence_length,
verbose,
)
def seed_everything(seed: int = 42):
torch.backends.cudnn.deterministic = True
torch.manual_seed(seed)
np.random.seed(seed)
@torch.no_grad()
def generate(
pipeline: FluxPipeline,
vae_conditions: List[Condition] = None,
config_path: str = None,
model_config: Optional[Dict[str, Any]] = {},
vae_condition_scale: float = 1.0,
default_lora: bool = False,
condition_pad_to: str = "square",
condition_size: int = 512,
text_cond_mask: Optional[torch.FloatTensor] = None,
delta_emb: Optional[torch.FloatTensor] = None,
delta_emb_pblock: Optional[torch.FloatTensor] = None,
delta_emb_mask: Optional[torch.FloatTensor] = None,
delta_start_ends = None,
condition_latents = None,
condition_ids = None,
mod_adapter = None,
store_attn_map: bool = False,
vae_skip_iter: str = None,
control_weight_lambda: str = None,
double_attention: bool = False,
single_attention: bool = False,
ip_scale: str = None,
use_latent_sblora_control: bool = False,
latent_sblora_scale: str = None,
use_condition_sblora_control: bool = False,
condition_sblora_scale: str = None,
idips = None,
**params: dict,
):
model_config = model_config or get_config(config_path).get("model", {})
vae_skip_iter = model_config.get("vae_skip_iter", vae_skip_iter)
double_attention = model_config.get("double_attention", double_attention)
single_attention = model_config.get("single_attention", single_attention)
control_weight_lambda = model_config.get("control_weight_lambda", control_weight_lambda)
ip_scale = model_config.get("ip_scale", ip_scale)
use_latent_sblora_control = model_config.get("use_latent_sblora_control", use_latent_sblora_control)
use_condition_sblora_control = model_config.get("use_condition_sblora_control", use_condition_sblora_control)
latent_sblora_scale = model_config.get("latent_sblora_scale", latent_sblora_scale)
condition_sblora_scale = model_config.get("condition_sblora_scale", condition_sblora_scale)
model_config["use_attention_double"] = False
model_config["use_attention_single"] = False
use_attention = False
if idips is not None:
if control_weight_lambda != "no":
parts = control_weight_lambda.split(',')
new_parts = []
for part in parts:
if ':' in part:
left, right = part.split(':')
values = right.split('/')
# 保存整体值
global_value = values[0]
id_value = values[1]
ip_value = values[2]
new_values = [global_value]
for is_id in idips:
if is_id:
new_values.append(id_value)
else:
new_values.append(ip_value)
new_part = f"{left}:{('/'.join(new_values))}"
new_parts.append(new_part)
else:
new_parts.append(part)
control_weight_lambda = ','.join(new_parts)
if vae_condition_scale != 1:
for name, module in pipeline.transformer.named_modules():
if not name.endswith(".attn"):
continue
module.c_factor = torch.ones(1, 1) * vae_condition_scale
self = pipeline
(
prompt,
prompt_2,
height,
width,
num_inference_steps,
timesteps,
guidance_scale,
num_images_per_prompt,
generator,
latents,
prompt_embeds,
pooled_prompt_embeds,
output_type,
return_dict,
joint_attention_kwargs,
callback_on_step_end,
callback_on_step_end_tensor_inputs,
max_sequence_length,
verbose,
) = prepare_params(**params)
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None)
if self.joint_attention_kwargs is not None
else None
)
(
t5_prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = encode_prompt_with_clip_t5(
self=self,
prompt="" if self.text_encoder_2 is None else prompt,
prompt_2=None,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
pooled_prompt_embeds.dtype,
device,
generator,
latents,
)
latent_height = height // 16
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
self._num_timesteps = len(timesteps)
attn_map = None
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
totalsteps = timesteps[0]
if control_weight_lambda is not None:
print("control_weight_lambda", control_weight_lambda)
control_weight_lambda_schedule = []
for scale_str in control_weight_lambda.split(','):
time_region, scale = scale_str.split(':')
start, end = time_region.split('-')
scales = [float(s) for s in scale.split('/')]
control_weight_lambda_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, scales])
if ip_scale is not None:
print("ip_scale", ip_scale)
ip_scale_schedule = []
for scale_str in ip_scale.split(','):
time_region, scale = scale_str.split(':')
start, end = time_region.split('-')
ip_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
if use_latent_sblora_control:
if latent_sblora_scale is not None:
print("latent_sblora_scale", latent_sblora_scale)
latent_sblora_scale_schedule = []
for scale_str in latent_sblora_scale.split(','):
time_region, scale = scale_str.split(':')
start, end = time_region.split('-')
latent_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
if use_condition_sblora_control:
if condition_sblora_scale is not None:
print("condition_sblora_scale", condition_sblora_scale)
condition_sblora_scale_schedule = []
for scale_str in condition_sblora_scale.split(','):
time_region, scale = scale_str.split(':')
start, end = time_region.split('-')
condition_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
if vae_skip_iter is not None:
print("vae_skip_iter", vae_skip_iter)
vae_skip_iter_schedule = []
for scale_str in vae_skip_iter.split(','):
time_region, scale = scale_str.split(':')
start, end = time_region.split('-')
vae_skip_iter_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
if control_weight_lambda is not None and attn_map is None:
batch_size = latents.shape[0]
latent_width = latents.shape[1]//latent_height
attn_map = torch.ones(batch_size, latent_height, latent_width, 128, device=latents.device, dtype=torch.bfloat16)
print("contol_weight_only", attn_map.shape)
self.scheduler.set_begin_index(0)
self.scheduler._init_step_index(0)
for i, t in enumerate(timesteps):
if control_weight_lambda is not None:
cur_control_weight_lambda = []
for start, end, scale in control_weight_lambda_schedule:
if t <= start and t >= end:
cur_control_weight_lambda = scale
break
print(f"timestep:{t}, cur_control_weight_lambda:{cur_control_weight_lambda}")
if cur_control_weight_lambda:
model_config["use_attention_single"] = True
use_attention = True
model_config["use_atten_lambda"] = cur_control_weight_lambda
else:
model_config["use_attention_single"] = False
use_attention = False
if self.interrupt:
continue
if isinstance(delta_emb, list):
cur_delta_emb = delta_emb[i]
cur_delta_emb_pblock = delta_emb_pblock[i]
cur_delta_emb_mask = delta_emb_mask[i]
else:
cur_delta_emb = delta_emb
cur_delta_emb_pblock = delta_emb_pblock
cur_delta_emb_mask = delta_emb_mask
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype) / 1000
prompt_embeds = t5_prompt_embeds
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=prompt_embeds.dtype)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.tensor([guidance_scale], device=device)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
self.transformer.enable_lora()
lora_weight = 1
if ip_scale is not None:
lora_weight = 0
for start, end, scale in ip_scale_schedule:
if t <= start and t >= end:
lora_weight = scale
break
if lora_weight != 1: print(f"timestep:{t}, lora_weights:{lora_weight}")
latent_sblora_weight = None
if use_latent_sblora_control:
if latent_sblora_scale is not None:
latent_sblora_weight = 0
for start, end, scale in latent_sblora_scale_schedule:
if t <= start and t >= end:
latent_sblora_weight = scale
break
if latent_sblora_weight != 1: print(f"timestep:{t}, latent_sblora_weight:{latent_sblora_weight}")
condition_sblora_weight = None
if use_condition_sblora_control:
if condition_sblora_scale is not None:
condition_sblora_weight = 0
for start, end, scale in condition_sblora_scale_schedule:
if t <= start and t >= end:
condition_sblora_weight = scale
break
if condition_sblora_weight !=1: print(f"timestep:{t}, condition_sblora_weight:{condition_sblora_weight}")
vae_skip_iter_t = False
if vae_skip_iter is not None:
for start, end, scale in vae_skip_iter_schedule:
if t <= start and t >= end:
vae_skip_iter_t = bool(scale)
break
if vae_skip_iter_t:
print(f"timestep:{t}, skip vae:{vae_skip_iter_t}")
noise_pred = tranformer_forward(
self.transformer,
model_config=model_config,
# Inputs of the condition (new feature)
text_cond_mask=text_cond_mask,
delta_emb=cur_delta_emb,
delta_emb_pblock=cur_delta_emb_pblock,
delta_emb_mask=cur_delta_emb_mask,
delta_start_ends=delta_start_ends,
condition_latents=None if vae_skip_iter_t else condition_latents,
condition_ids=None if vae_skip_iter_t else condition_ids,
condition_type_ids=None,
# Inputs to the original transformer
hidden_states=latents,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timestep,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs={'scale': lora_weight, "latent_sblora_weight": latent_sblora_weight, "condition_sblora_weight": condition_sblora_weight},
store_attn_map=use_attention,
last_attn_map=attn_map if cur_control_weight_lambda else None,
use_text_mod=model_config["modulation"]["use_text_mod"],
use_img_mod=model_config["modulation"]["use_img_mod"],
mod_adapter=mod_adapter,
latent_height=latent_height,
return_dict=False,
)[0]
if use_attention:
attn_maps, _ = gather_attn_maps(self.transformer, clear=True)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (
latents / self.vae.config.scaling_factor
) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
self.transformer.enable_lora()
if vae_condition_scale != 1:
for name, module in pipeline.transformer.named_modules():
if not name.endswith(".attn"):
continue
del module.c_factor
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
@torch.no_grad()
def generate_from_test_sample(
test_sample, pipe, config,
num_images=1,
num_inference_steps = 8,
vae_skip_iter: str = None,
target_height: int = None,
target_width: int = None,
seed: int = 42,
control_weight_lambda: str = None,
double_attention: bool = False,
single_attention: bool = False,
ip_scale: str = None,
use_latent_sblora_control: bool = False,
latent_sblora_scale: str = None,
use_condition_sblora_control: bool = False,
condition_sblora_scale: str = None,
use_idip = False,
**kargs
):
target_size = config["train"]["dataset"]["val_target_size"]
condition_size = config["train"]["dataset"].get("val_condition_size", target_size//2)
condition_pad_to = config["train"]["dataset"]["condition_pad_to"]
pos_offset_type = config["model"].get("pos_offset_type", "width")
seed = config["model"].get("seed", seed)
device = pipe._execution_device
condition_imgs = test_sample['input_images']
position_delta = test_sample['position_delta']
prompt = test_sample['prompt']
original_image = test_sample.get('original_image', None)
condition_type = test_sample.get('condition_type', "subject")
modulation_input = test_sample.get('modulation', None)
delta_start_ends = None
condition_latents = condition_ids = None
text_cond_mask = None
delta_embs = None
delta_embs_pblock = None
delta_embs_mask = None
try:
max_length = config["model"]["modulation"]["max_text_len"]
except Exception as e:
print(e)
max_length = 512
if modulation_input is None or len(modulation_input) == 0:
delta_emb = delta_emb_pblock = delta_emb_mask = None
else:
dtype = torch.bfloat16
batch_size = 1
N = config["model"]["modulation"].get("per_block_adapter_single_blocks", 0) + 19
guidance = torch.tensor([3.5]).to(device).expand(batch_size)
out_dim = config["model"]["modulation"]["out_dim"]
tar_text_inputs = tokenize_t5_prompt(pipe, prompt, max_length)
tar_padding_mask = tar_text_inputs.attention_mask.to(device).bool()
tar_tokens = tar_text_inputs.input_ids.to(device)
if config["model"]["modulation"]["eos_exclude"]:
tar_padding_mask[tar_tokens == 1] = False
def get_start_end_by_pompt_matching(src_prompts, tar_prompts):
text_cond_mask = torch.zeros(batch_size, max_length, device=device, dtype=torch.bool)
tar_prompt_input_ids = tokenize_t5_prompt(pipe, tar_prompts, max_length).input_ids
src_prompt_count = 1
start_ends = []
for i, (src_prompt, tar_prompt, tar_prompt_tokens) in enumerate(zip(src_prompts, tar_prompts, tar_prompt_input_ids)):
try:
tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_prompt_tokens, src_prompt, src_prompt_count, max_length, verbose=False)
start_ends.append([tar_start, tar_end])
text_cond_mask[i, tar_start:tar_end] = True
except Exception as e:
print(e)
return start_ends, text_cond_mask
def encode_mod_image(pil_images):
if config["model"]["modulation"]["use_dit"]:
raise NotImplementedError()
else:
pil_images = [pad_to_square(img).resize((224, 224)) for img in pil_images]
if config["model"]["modulation"]["use_vae"]:
raise NotImplementedError()
else:
clip_pixel_values = pipe.clip_processor(
text=None, images=pil_images, do_resize=False, do_center_crop=False, return_tensors="pt",
).pixel_values.to(dtype=dtype, device=device)
clip_outputs = pipe.clip_model(clip_pixel_values, output_hidden_states=True, interpolate_pos_encoding=True, return_dict=True)
return clip_outputs
def rgba_to_white_background(input_path, background=(255,255,255)):
with Image.open(input_path).convert("RGBA") as img:
img_np = np.array(img)
alpha = img_np[:, :, 3] / 255.0 # 归一化Alpha通道[3](@ref)
rgb = img_np[:, :, :3].astype(float) # 提取RGB通道
background_np = np.full_like(rgb, background, dtype=float) # 根据参数生成背景[7](@ref)
# 混合计算:前景色*alpha + 背景色*(1-alpha)
result_np = rgb * alpha[..., np.newaxis] + \
background_np * (1 - alpha[..., np.newaxis])
result = Image.fromarray(result_np.astype(np.uint8), "RGB")
return result
def get_mod_emb(modulation_input, timestep):
delta_emb = torch.zeros((batch_size, max_length, out_dim), dtype=dtype, device=device)
delta_emb_pblock = torch.zeros((batch_size, max_length, N, out_dim), dtype=dtype, device=device)
delta_emb_mask = torch.zeros((batch_size, max_length), dtype=torch.bool, device=device)
delta_start_ends = None
condition_latents = condition_ids = None
text_cond_mask = None
if modulation_input[0]["type"] == "adapter":
num_inputs = len(modulation_input[0]["src_inputs"])
src_prompts = [x["caption"] for x in modulation_input[0]["src_inputs"]]
src_text_inputs = tokenize_t5_prompt(pipe, src_prompts, max_length)
src_input_ids = unpad_input_ids(src_text_inputs.input_ids, src_text_inputs.attention_mask)
tar_input_ids = unpad_input_ids(tar_text_inputs.input_ids, tar_text_inputs.attention_mask)
src_prompt_embeds = pipe._get_t5_prompt_embeds(prompt=src_prompts, max_sequence_length=max_length, device=device) # (M, 512, 4096)
pil_images = [rgba_to_white_background(x["image_path"]) for x in modulation_input[0]["src_inputs"]]
src_ds_scales = [x.get("downsample_scale", 1.0) for x in modulation_input[0]["src_inputs"]]
resized_pil_images = []
for img, ds_scale in zip(pil_images, src_ds_scales):
img = pad_to_square(img)
if ds_scale < 1.0:
assert ds_scale > 0
img = img.resize((int(224 * ds_scale), int(224 * ds_scale))).resize((224, 224))
resized_pil_images.append(img)
pil_images = resized_pil_images
img_encoded = encode_mod_image(pil_images)
delta_start_ends = []
text_cond_mask = torch.zeros(num_inputs, max_length, device=device, dtype=torch.bool)
if config["model"]["modulation"]["pass_vae"]:
pil_images = [pad_to_square(img).resize((condition_size, condition_size)) for img in pil_images]
with torch.no_grad():
batch_tensor = torch.stack([pil2tensor(x) for x in pil_images])
x_0, img_ids = encode_vae_images(pipe, batch_tensor) # (N, 256, 64)
condition_latents = x_0.clone().detach().reshape(1, -1, 64) # (1, N256, 64)
condition_ids = img_ids.clone().detach()
condition_ids = condition_ids.unsqueeze(0).repeat_interleave(num_inputs, dim=0) # (N, 256, 3)
for i in range(num_inputs):
condition_ids[i, :, 1] += 0 if pos_offset_type == "width" else -(batch_tensor.shape[-1]//16) * (i + 1)
condition_ids[i, :, 2] += -(batch_tensor.shape[-1]//16) * (i + 1)
condition_ids = condition_ids.reshape(-1, 3) # (N256, 3)
if config["model"]["modulation"]["use_dit"]:
raise NotImplementedError()
else:
src_delta_embs = [] # [(512, 3072)]
src_delta_emb_pblock = []
for i in range(num_inputs):
if isinstance(img_encoded, dict):
_src_clip_outputs = {}
for key in img_encoded:
if torch.is_tensor(img_encoded[key]):
_src_clip_outputs[key] = img_encoded[key][i:i+1]
else:
_src_clip_outputs[key] = [x[i:i+1] for x in img_encoded[key]]
_img_encoded = _src_clip_outputs
else:
_img_encoded = img_encoded[i:i+1]
x1, x2 = pipe.modulation_adapters[0](timestep, src_prompt_embeds[i:i+1], _img_encoded)
src_delta_embs.append(x1[0]) # (512, 3072)
src_delta_emb_pblock.append(x2[0]) # (512, N, 3072)
for input_args in modulation_input[0]["use_words"]:
src_word_count = 1
if len(input_args) == 3:
src_input_index, src_word, tar_word = input_args
tar_word_count = 1
else:
src_input_index, src_word, tar_word, tar_word_count = input_args[:4]
src_prompt = src_prompts[src_input_index]
tar_prompt = prompt
src_start, src_end = get_word_index(pipe, src_prompt, src_input_ids[src_input_index], src_word, src_word_count, max_length, verbose=False)
tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_input_ids[0], tar_word, tar_word_count, max_length, verbose=False)
if delta_emb is not None:
delta_emb[:, tar_start:tar_end] = src_delta_embs[src_input_index][src_start:src_end] # (B, 512, 3072)
if delta_emb_pblock is not None:
delta_emb_pblock[:, tar_start:tar_end] = src_delta_emb_pblock[src_input_index][src_start:src_end] # (B, 512, N, 3072)
delta_emb_mask[:, tar_start:tar_end] = True
text_cond_mask[src_input_index, tar_start:tar_end] = True
delta_start_ends.append([0, src_input_index, src_start, src_end, tar_start, tar_end])
text_cond_mask = text_cond_mask.transpose(0, 1).unsqueeze(0)
else:
raise NotImplementedError()
return delta_emb, delta_emb_pblock, delta_emb_mask, \
text_cond_mask, delta_start_ends, condition_latents, condition_ids
num_channels_latents = pipe.transformer.config.in_channels // 4
# set timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
mu = calculate_shift(
num_channels_latents,
pipe.scheduler.config.base_image_seq_len,
pipe.scheduler.config.max_image_seq_len,
pipe.scheduler.config.base_shift,
pipe.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
pipe.scheduler,
num_inference_steps,
device,
None,
sigmas,
mu=mu,
)
if modulation_input is not None:
delta_embs = []
delta_embs_pblock = []
delta_embs_mask = []
for i, t in enumerate(timesteps):
t = t.expand(1).to(torch.bfloat16) / 1000
(
delta_emb, delta_emb_pblock, delta_emb_mask,
text_cond_mask, delta_start_ends,
condition_latents, condition_ids
) = get_mod_emb(modulation_input, t)
delta_embs.append(delta_emb)
delta_embs_pblock.append(delta_emb_pblock)
delta_embs_mask.append(delta_emb_mask)
if original_image is not None:
raise NotImplementedError()
(target_height, target_width), closest_ratio = get_closest_ratio(original_image.height, original_image.width, train_aspect_ratios)
elif modulation_input is None or len(modulation_input) == 0:
delta_emb = delta_emb_pblock = delta_emb_mask = None
else:
for i, t in enumerate(timesteps):
t = t.expand(1).to(torch.bfloat16) / 1000
(
delta_emb, delta_emb_pblock, delta_emb_mask,
text_cond_mask, delta_start_ends,
condition_latents, condition_ids
) = get_mod_emb(modulation_input, t)
delta_embs.append(delta_emb)
delta_embs_pblock.append(delta_emb_pblock)
delta_embs_mask.append(delta_emb_mask)
if target_height is None or target_width is None:
target_height = target_width = target_size
if condition_pad_to == "square":
condition_imgs = [pad_to_square(x) for x in condition_imgs]
elif condition_pad_to == "target":
condition_imgs = [pad_to_target(x, (target_size, target_size)) for x in condition_imgs]
condition_imgs = [x.resize((condition_size, condition_size)).convert("RGB") for x in condition_imgs]
# TODO: fix position_delta
conditions = [
Condition(
condition_type=condition_type,
condition=x,
position_delta=position_delta,
) for x in condition_imgs
]
# vlm_images = condition_imgs if config["model"]["use_vlm"] else []
use_perblock_adapter = False
try:
if config["model"]["modulation"]["use_perblock_adapter"]:
use_perblock_adapter = True
except Exception as e:
pass
results = []
for i in range(num_images):
clear_attn_maps(pipe.transformer)
generator = torch.Generator(device=device)
generator.manual_seed(seed + i)
if modulation_input is None or len(modulation_input) == 0:
idips = None
else:
idips = ["human" in p["image_path"] for p in modulation_input[0]["src_inputs"]]
if len(modulation_input[0]["use_words"][0])==5:
print("use idips in use_words")
idips = [x[-1] for x in modulation_input[0]["use_words"]]
result_img = generate(
pipe,
prompt=prompt,
num_inference_steps=num_inference_steps,
max_sequence_length=max_length,
vae_conditions=conditions,
generator=generator,
model_config=config["model"],
height=target_height,
width=target_width,
condition_pad_to=condition_pad_to,
condition_size=condition_size,
text_cond_mask=text_cond_mask,
delta_emb=delta_embs,
delta_emb_pblock=delta_embs_pblock if use_perblock_adapter else None,
delta_emb_mask=delta_embs_mask,
delta_start_ends=delta_start_ends,
condition_latents=condition_latents,
condition_ids=condition_ids,
mod_adapter=pipe.modulation_adapters[0] if config["model"]["modulation"]["use_dit"] else None,
vae_skip_iter=vae_skip_iter,
control_weight_lambda=control_weight_lambda,
double_attention=double_attention,
single_attention=single_attention,
ip_scale=ip_scale,
use_latent_sblora_control=use_latent_sblora_control,
latent_sblora_scale=latent_sblora_scale,
use_condition_sblora_control=use_condition_sblora_control,
condition_sblora_scale=condition_sblora_scale,
idips=idips if use_idip else None,
**kargs,
).images[0]
final_image = result_img
results.append(final_image)
if num_images == 1:
return results[0]
return results