|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import yaml, os |
|
from PIL import Image |
|
from diffusers.pipelines import FluxPipeline |
|
from typing import List, Union, Optional, Dict, Any, Callable |
|
from src.flux.transformer import tranformer_forward |
|
from src.flux.condition import Condition |
|
|
|
from diffusers.pipelines.flux.pipeline_flux import ( |
|
FluxPipelineOutput, |
|
calculate_shift, |
|
retrieve_timesteps, |
|
np, |
|
) |
|
from src.flux.pipeline_tools import ( |
|
encode_prompt_with_clip_t5, tokenize_t5_prompt, clear_attn_maps, encode_vae_images |
|
) |
|
|
|
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, decode_vae_images, \ |
|
save_attention_maps, gather_attn_maps, clear_attn_maps, load_dit_lora, quantization |
|
|
|
from src.utils.data_utils import pad_to_square, pad_to_target, pil2tensor, get_closest_ratio, get_aspect_ratios |
|
from src.utils.modulation_utils import get_word_index, unpad_input_ids |
|
|
|
def get_config(config_path: str = None): |
|
config_path = config_path or os.environ.get("XFL_CONFIG") |
|
if not config_path: |
|
return {} |
|
with open(config_path, "r") as f: |
|
config = yaml.safe_load(f) |
|
return config |
|
|
|
|
|
def prepare_params( |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
num_inference_steps: int = 8, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
verbose: bool = False, |
|
**kwargs: dict, |
|
): |
|
return ( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
num_inference_steps, |
|
timesteps, |
|
guidance_scale, |
|
num_images_per_prompt, |
|
generator, |
|
latents, |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
output_type, |
|
return_dict, |
|
joint_attention_kwargs, |
|
callback_on_step_end, |
|
callback_on_step_end_tensor_inputs, |
|
max_sequence_length, |
|
verbose, |
|
) |
|
|
|
|
|
def seed_everything(seed: int = 42): |
|
torch.backends.cudnn.deterministic = True |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
@torch.no_grad() |
|
def generate( |
|
pipeline: FluxPipeline, |
|
vae_conditions: List[Condition] = None, |
|
config_path: str = None, |
|
model_config: Optional[Dict[str, Any]] = {}, |
|
vae_condition_scale: float = 1.0, |
|
default_lora: bool = False, |
|
condition_pad_to: str = "square", |
|
condition_size: int = 512, |
|
text_cond_mask: Optional[torch.FloatTensor] = None, |
|
delta_emb: Optional[torch.FloatTensor] = None, |
|
delta_emb_pblock: Optional[torch.FloatTensor] = None, |
|
delta_emb_mask: Optional[torch.FloatTensor] = None, |
|
delta_start_ends = None, |
|
condition_latents = None, |
|
condition_ids = None, |
|
mod_adapter = None, |
|
store_attn_map: bool = False, |
|
vae_skip_iter: str = None, |
|
control_weight_lambda: str = None, |
|
double_attention: bool = False, |
|
single_attention: bool = False, |
|
ip_scale: str = None, |
|
use_latent_sblora_control: bool = False, |
|
latent_sblora_scale: str = None, |
|
use_condition_sblora_control: bool = False, |
|
condition_sblora_scale: str = None, |
|
idips = None, |
|
**params: dict, |
|
): |
|
model_config = model_config or get_config(config_path).get("model", {}) |
|
|
|
vae_skip_iter = model_config.get("vae_skip_iter", vae_skip_iter) |
|
double_attention = model_config.get("double_attention", double_attention) |
|
single_attention = model_config.get("single_attention", single_attention) |
|
control_weight_lambda = model_config.get("control_weight_lambda", control_weight_lambda) |
|
ip_scale = model_config.get("ip_scale", ip_scale) |
|
use_latent_sblora_control = model_config.get("use_latent_sblora_control", use_latent_sblora_control) |
|
use_condition_sblora_control = model_config.get("use_condition_sblora_control", use_condition_sblora_control) |
|
|
|
latent_sblora_scale = model_config.get("latent_sblora_scale", latent_sblora_scale) |
|
condition_sblora_scale = model_config.get("condition_sblora_scale", condition_sblora_scale) |
|
|
|
model_config["use_attention_double"] = False |
|
model_config["use_attention_single"] = False |
|
use_attention = False |
|
|
|
if idips is not None: |
|
if control_weight_lambda != "no": |
|
parts = control_weight_lambda.split(',') |
|
new_parts = [] |
|
for part in parts: |
|
if ':' in part: |
|
left, right = part.split(':') |
|
values = right.split('/') |
|
|
|
global_value = values[0] |
|
id_value = values[1] |
|
ip_value = values[2] |
|
new_values = [global_value] |
|
for is_id in idips: |
|
if is_id: |
|
new_values.append(id_value) |
|
else: |
|
new_values.append(ip_value) |
|
new_part = f"{left}:{('/'.join(new_values))}" |
|
new_parts.append(new_part) |
|
else: |
|
new_parts.append(part) |
|
control_weight_lambda = ','.join(new_parts) |
|
|
|
if vae_condition_scale != 1: |
|
for name, module in pipeline.transformer.named_modules(): |
|
if not name.endswith(".attn"): |
|
continue |
|
module.c_factor = torch.ones(1, 1) * vae_condition_scale |
|
|
|
self = pipeline |
|
( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
num_inference_steps, |
|
timesteps, |
|
guidance_scale, |
|
num_images_per_prompt, |
|
generator, |
|
latents, |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
output_type, |
|
return_dict, |
|
joint_attention_kwargs, |
|
callback_on_step_end, |
|
callback_on_step_end_tensor_inputs, |
|
max_sequence_length, |
|
verbose, |
|
) = prepare_params(**params) |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) |
|
if self.joint_attention_kwargs is not None |
|
else None |
|
) |
|
( |
|
t5_prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = encode_prompt_with_clip_t5( |
|
self=self, |
|
prompt="" if self.text_encoder_2 is None else prompt, |
|
prompt_2=None, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
pooled_prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
latent_height = height // 16 |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max( |
|
len(timesteps) - num_inference_steps * self.scheduler.order, 0 |
|
) |
|
self._num_timesteps = len(timesteps) |
|
|
|
attn_map = None |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
totalsteps = timesteps[0] |
|
if control_weight_lambda is not None: |
|
print("control_weight_lambda", control_weight_lambda) |
|
control_weight_lambda_schedule = [] |
|
for scale_str in control_weight_lambda.split(','): |
|
time_region, scale = scale_str.split(':') |
|
start, end = time_region.split('-') |
|
scales = [float(s) for s in scale.split('/')] |
|
control_weight_lambda_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, scales]) |
|
|
|
if ip_scale is not None: |
|
print("ip_scale", ip_scale) |
|
ip_scale_schedule = [] |
|
for scale_str in ip_scale.split(','): |
|
time_region, scale = scale_str.split(':') |
|
start, end = time_region.split('-') |
|
ip_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)]) |
|
|
|
if use_latent_sblora_control: |
|
if latent_sblora_scale is not None: |
|
print("latent_sblora_scale", latent_sblora_scale) |
|
latent_sblora_scale_schedule = [] |
|
for scale_str in latent_sblora_scale.split(','): |
|
time_region, scale = scale_str.split(':') |
|
start, end = time_region.split('-') |
|
latent_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)]) |
|
|
|
if use_condition_sblora_control: |
|
if condition_sblora_scale is not None: |
|
print("condition_sblora_scale", condition_sblora_scale) |
|
condition_sblora_scale_schedule = [] |
|
for scale_str in condition_sblora_scale.split(','): |
|
time_region, scale = scale_str.split(':') |
|
start, end = time_region.split('-') |
|
condition_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)]) |
|
|
|
|
|
if vae_skip_iter is not None: |
|
print("vae_skip_iter", vae_skip_iter) |
|
vae_skip_iter_schedule = [] |
|
for scale_str in vae_skip_iter.split(','): |
|
time_region, scale = scale_str.split(':') |
|
start, end = time_region.split('-') |
|
vae_skip_iter_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)]) |
|
|
|
if control_weight_lambda is not None and attn_map is None: |
|
batch_size = latents.shape[0] |
|
latent_width = latents.shape[1]//latent_height |
|
attn_map = torch.ones(batch_size, latent_height, latent_width, 128, device=latents.device, dtype=torch.bfloat16) |
|
print("contol_weight_only", attn_map.shape) |
|
|
|
self.scheduler.set_begin_index(0) |
|
self.scheduler._init_step_index(0) |
|
for i, t in enumerate(timesteps): |
|
|
|
if control_weight_lambda is not None: |
|
cur_control_weight_lambda = [] |
|
for start, end, scale in control_weight_lambda_schedule: |
|
if t <= start and t >= end: |
|
cur_control_weight_lambda = scale |
|
break |
|
print(f"timestep:{t}, cur_control_weight_lambda:{cur_control_weight_lambda}") |
|
|
|
if cur_control_weight_lambda: |
|
model_config["use_attention_single"] = True |
|
use_attention = True |
|
model_config["use_atten_lambda"] = cur_control_weight_lambda |
|
else: |
|
model_config["use_attention_single"] = False |
|
use_attention = False |
|
|
|
if self.interrupt: |
|
continue |
|
|
|
if isinstance(delta_emb, list): |
|
cur_delta_emb = delta_emb[i] |
|
cur_delta_emb_pblock = delta_emb_pblock[i] |
|
cur_delta_emb_mask = delta_emb_mask[i] |
|
else: |
|
cur_delta_emb = delta_emb |
|
cur_delta_emb_pblock = delta_emb_pblock |
|
cur_delta_emb_mask = delta_emb_mask |
|
|
|
|
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) / 1000 |
|
prompt_embeds = t5_prompt_embeds |
|
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=prompt_embeds.dtype) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.tensor([guidance_scale], device=device) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
self.transformer.enable_lora() |
|
|
|
lora_weight = 1 |
|
if ip_scale is not None: |
|
lora_weight = 0 |
|
for start, end, scale in ip_scale_schedule: |
|
if t <= start and t >= end: |
|
lora_weight = scale |
|
break |
|
if lora_weight != 1: print(f"timestep:{t}, lora_weights:{lora_weight}") |
|
|
|
latent_sblora_weight = None |
|
if use_latent_sblora_control: |
|
if latent_sblora_scale is not None: |
|
latent_sblora_weight = 0 |
|
for start, end, scale in latent_sblora_scale_schedule: |
|
if t <= start and t >= end: |
|
latent_sblora_weight = scale |
|
break |
|
if latent_sblora_weight != 1: print(f"timestep:{t}, latent_sblora_weight:{latent_sblora_weight}") |
|
|
|
condition_sblora_weight = None |
|
if use_condition_sblora_control: |
|
if condition_sblora_scale is not None: |
|
condition_sblora_weight = 0 |
|
for start, end, scale in condition_sblora_scale_schedule: |
|
if t <= start and t >= end: |
|
condition_sblora_weight = scale |
|
break |
|
if condition_sblora_weight !=1: print(f"timestep:{t}, condition_sblora_weight:{condition_sblora_weight}") |
|
|
|
vae_skip_iter_t = False |
|
if vae_skip_iter is not None: |
|
for start, end, scale in vae_skip_iter_schedule: |
|
if t <= start and t >= end: |
|
vae_skip_iter_t = bool(scale) |
|
break |
|
if vae_skip_iter_t: |
|
print(f"timestep:{t}, skip vae:{vae_skip_iter_t}") |
|
|
|
noise_pred = tranformer_forward( |
|
self.transformer, |
|
model_config=model_config, |
|
|
|
text_cond_mask=text_cond_mask, |
|
delta_emb=cur_delta_emb, |
|
delta_emb_pblock=cur_delta_emb_pblock, |
|
delta_emb_mask=cur_delta_emb_mask, |
|
delta_start_ends=delta_start_ends, |
|
condition_latents=None if vae_skip_iter_t else condition_latents, |
|
condition_ids=None if vae_skip_iter_t else condition_ids, |
|
condition_type_ids=None, |
|
|
|
hidden_states=latents, |
|
|
|
timestep=timestep, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs={'scale': lora_weight, "latent_sblora_weight": latent_sblora_weight, "condition_sblora_weight": condition_sblora_weight}, |
|
store_attn_map=use_attention, |
|
last_attn_map=attn_map if cur_control_weight_lambda else None, |
|
use_text_mod=model_config["modulation"]["use_text_mod"], |
|
use_img_mod=model_config["modulation"]["use_img_mod"], |
|
mod_adapter=mod_adapter, |
|
latent_height=latent_height, |
|
return_dict=False, |
|
)[0] |
|
|
|
if use_attention: |
|
attn_maps, _ = gather_attn_maps(self.transformer, clear=True) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = ( |
|
latents / self.vae.config.scaling_factor |
|
) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
self.transformer.enable_lora() |
|
|
|
if vae_condition_scale != 1: |
|
for name, module in pipeline.transformer.named_modules(): |
|
if not name.endswith(".attn"): |
|
continue |
|
del module.c_factor |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|
|
|
|
@torch.no_grad() |
|
def generate_from_test_sample( |
|
test_sample, pipe, config, |
|
num_images=1, |
|
num_inference_steps = 8, |
|
vae_skip_iter: str = None, |
|
target_height: int = None, |
|
target_width: int = None, |
|
seed: int = 42, |
|
control_weight_lambda: str = None, |
|
double_attention: bool = False, |
|
single_attention: bool = False, |
|
ip_scale: str = None, |
|
use_latent_sblora_control: bool = False, |
|
latent_sblora_scale: str = None, |
|
use_condition_sblora_control: bool = False, |
|
condition_sblora_scale: str = None, |
|
use_idip = False, |
|
**kargs |
|
): |
|
target_size = config["train"]["dataset"]["val_target_size"] |
|
condition_size = config["train"]["dataset"].get("val_condition_size", target_size//2) |
|
condition_pad_to = config["train"]["dataset"]["condition_pad_to"] |
|
pos_offset_type = config["model"].get("pos_offset_type", "width") |
|
seed = config["model"].get("seed", seed) |
|
|
|
device = pipe._execution_device |
|
|
|
condition_imgs = test_sample['input_images'] |
|
position_delta = test_sample['position_delta'] |
|
prompt = test_sample['prompt'] |
|
original_image = test_sample.get('original_image', None) |
|
condition_type = test_sample.get('condition_type', "subject") |
|
modulation_input = test_sample.get('modulation', None) |
|
|
|
delta_start_ends = None |
|
condition_latents = condition_ids = None |
|
text_cond_mask = None |
|
|
|
delta_embs = None |
|
delta_embs_pblock = None |
|
delta_embs_mask = None |
|
|
|
try: |
|
max_length = config["model"]["modulation"]["max_text_len"] |
|
except Exception as e: |
|
print(e) |
|
max_length = 512 |
|
|
|
if modulation_input is None or len(modulation_input) == 0: |
|
delta_emb = delta_emb_pblock = delta_emb_mask = None |
|
else: |
|
dtype = torch.bfloat16 |
|
batch_size = 1 |
|
N = config["model"]["modulation"].get("per_block_adapter_single_blocks", 0) + 19 |
|
guidance = torch.tensor([3.5]).to(device).expand(batch_size) |
|
out_dim = config["model"]["modulation"]["out_dim"] |
|
|
|
tar_text_inputs = tokenize_t5_prompt(pipe, prompt, max_length) |
|
tar_padding_mask = tar_text_inputs.attention_mask.to(device).bool() |
|
tar_tokens = tar_text_inputs.input_ids.to(device) |
|
if config["model"]["modulation"]["eos_exclude"]: |
|
tar_padding_mask[tar_tokens == 1] = False |
|
|
|
def get_start_end_by_pompt_matching(src_prompts, tar_prompts): |
|
text_cond_mask = torch.zeros(batch_size, max_length, device=device, dtype=torch.bool) |
|
tar_prompt_input_ids = tokenize_t5_prompt(pipe, tar_prompts, max_length).input_ids |
|
src_prompt_count = 1 |
|
start_ends = [] |
|
for i, (src_prompt, tar_prompt, tar_prompt_tokens) in enumerate(zip(src_prompts, tar_prompts, tar_prompt_input_ids)): |
|
try: |
|
tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_prompt_tokens, src_prompt, src_prompt_count, max_length, verbose=False) |
|
start_ends.append([tar_start, tar_end]) |
|
text_cond_mask[i, tar_start:tar_end] = True |
|
except Exception as e: |
|
print(e) |
|
return start_ends, text_cond_mask |
|
|
|
def encode_mod_image(pil_images): |
|
if config["model"]["modulation"]["use_dit"]: |
|
raise NotImplementedError() |
|
else: |
|
pil_images = [pad_to_square(img).resize((224, 224)) for img in pil_images] |
|
if config["model"]["modulation"]["use_vae"]: |
|
raise NotImplementedError() |
|
else: |
|
clip_pixel_values = pipe.clip_processor( |
|
text=None, images=pil_images, do_resize=False, do_center_crop=False, return_tensors="pt", |
|
).pixel_values.to(dtype=dtype, device=device) |
|
clip_outputs = pipe.clip_model(clip_pixel_values, output_hidden_states=True, interpolate_pos_encoding=True, return_dict=True) |
|
return clip_outputs |
|
|
|
def rgba_to_white_background(input_path, background=(255,255,255)): |
|
with Image.open(input_path).convert("RGBA") as img: |
|
img_np = np.array(img) |
|
alpha = img_np[:, :, 3] / 255.0 |
|
rgb = img_np[:, :, :3].astype(float) |
|
|
|
background_np = np.full_like(rgb, background, dtype=float) |
|
|
|
|
|
result_np = rgb * alpha[..., np.newaxis] + \ |
|
background_np * (1 - alpha[..., np.newaxis]) |
|
|
|
result = Image.fromarray(result_np.astype(np.uint8), "RGB") |
|
return result |
|
def get_mod_emb(modulation_input, timestep): |
|
delta_emb = torch.zeros((batch_size, max_length, out_dim), dtype=dtype, device=device) |
|
delta_emb_pblock = torch.zeros((batch_size, max_length, N, out_dim), dtype=dtype, device=device) |
|
delta_emb_mask = torch.zeros((batch_size, max_length), dtype=torch.bool, device=device) |
|
delta_start_ends = None |
|
condition_latents = condition_ids = None |
|
text_cond_mask = None |
|
|
|
if modulation_input[0]["type"] == "adapter": |
|
num_inputs = len(modulation_input[0]["src_inputs"]) |
|
src_prompts = [x["caption"] for x in modulation_input[0]["src_inputs"]] |
|
src_text_inputs = tokenize_t5_prompt(pipe, src_prompts, max_length) |
|
src_input_ids = unpad_input_ids(src_text_inputs.input_ids, src_text_inputs.attention_mask) |
|
tar_input_ids = unpad_input_ids(tar_text_inputs.input_ids, tar_text_inputs.attention_mask) |
|
src_prompt_embeds = pipe._get_t5_prompt_embeds(prompt=src_prompts, max_sequence_length=max_length, device=device) |
|
|
|
pil_images = [rgba_to_white_background(x["image_path"]) for x in modulation_input[0]["src_inputs"]] |
|
|
|
src_ds_scales = [x.get("downsample_scale", 1.0) for x in modulation_input[0]["src_inputs"]] |
|
resized_pil_images = [] |
|
for img, ds_scale in zip(pil_images, src_ds_scales): |
|
img = pad_to_square(img) |
|
if ds_scale < 1.0: |
|
assert ds_scale > 0 |
|
img = img.resize((int(224 * ds_scale), int(224 * ds_scale))).resize((224, 224)) |
|
resized_pil_images.append(img) |
|
pil_images = resized_pil_images |
|
|
|
img_encoded = encode_mod_image(pil_images) |
|
delta_start_ends = [] |
|
text_cond_mask = torch.zeros(num_inputs, max_length, device=device, dtype=torch.bool) |
|
if config["model"]["modulation"]["pass_vae"]: |
|
pil_images = [pad_to_square(img).resize((condition_size, condition_size)) for img in pil_images] |
|
with torch.no_grad(): |
|
batch_tensor = torch.stack([pil2tensor(x) for x in pil_images]) |
|
x_0, img_ids = encode_vae_images(pipe, batch_tensor) |
|
|
|
condition_latents = x_0.clone().detach().reshape(1, -1, 64) |
|
condition_ids = img_ids.clone().detach() |
|
condition_ids = condition_ids.unsqueeze(0).repeat_interleave(num_inputs, dim=0) |
|
for i in range(num_inputs): |
|
condition_ids[i, :, 1] += 0 if pos_offset_type == "width" else -(batch_tensor.shape[-1]//16) * (i + 1) |
|
condition_ids[i, :, 2] += -(batch_tensor.shape[-1]//16) * (i + 1) |
|
condition_ids = condition_ids.reshape(-1, 3) |
|
|
|
if config["model"]["modulation"]["use_dit"]: |
|
raise NotImplementedError() |
|
else: |
|
src_delta_embs = [] |
|
src_delta_emb_pblock = [] |
|
for i in range(num_inputs): |
|
if isinstance(img_encoded, dict): |
|
_src_clip_outputs = {} |
|
for key in img_encoded: |
|
if torch.is_tensor(img_encoded[key]): |
|
_src_clip_outputs[key] = img_encoded[key][i:i+1] |
|
else: |
|
_src_clip_outputs[key] = [x[i:i+1] for x in img_encoded[key]] |
|
_img_encoded = _src_clip_outputs |
|
else: |
|
_img_encoded = img_encoded[i:i+1] |
|
|
|
x1, x2 = pipe.modulation_adapters[0](timestep, src_prompt_embeds[i:i+1], _img_encoded) |
|
src_delta_embs.append(x1[0]) |
|
src_delta_emb_pblock.append(x2[0]) |
|
|
|
for input_args in modulation_input[0]["use_words"]: |
|
src_word_count = 1 |
|
if len(input_args) == 3: |
|
src_input_index, src_word, tar_word = input_args |
|
tar_word_count = 1 |
|
else: |
|
src_input_index, src_word, tar_word, tar_word_count = input_args[:4] |
|
src_prompt = src_prompts[src_input_index] |
|
tar_prompt = prompt |
|
|
|
src_start, src_end = get_word_index(pipe, src_prompt, src_input_ids[src_input_index], src_word, src_word_count, max_length, verbose=False) |
|
tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_input_ids[0], tar_word, tar_word_count, max_length, verbose=False) |
|
if delta_emb is not None: |
|
delta_emb[:, tar_start:tar_end] = src_delta_embs[src_input_index][src_start:src_end] |
|
if delta_emb_pblock is not None: |
|
delta_emb_pblock[:, tar_start:tar_end] = src_delta_emb_pblock[src_input_index][src_start:src_end] |
|
delta_emb_mask[:, tar_start:tar_end] = True |
|
text_cond_mask[src_input_index, tar_start:tar_end] = True |
|
delta_start_ends.append([0, src_input_index, src_start, src_end, tar_start, tar_end]) |
|
text_cond_mask = text_cond_mask.transpose(0, 1).unsqueeze(0) |
|
|
|
else: |
|
raise NotImplementedError() |
|
return delta_emb, delta_emb_pblock, delta_emb_mask, \ |
|
text_cond_mask, delta_start_ends, condition_latents, condition_ids |
|
|
|
num_channels_latents = pipe.transformer.config.in_channels // 4 |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
mu = calculate_shift( |
|
num_channels_latents, |
|
pipe.scheduler.config.base_image_seq_len, |
|
pipe.scheduler.config.max_image_seq_len, |
|
pipe.scheduler.config.base_shift, |
|
pipe.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
pipe.scheduler, |
|
num_inference_steps, |
|
device, |
|
None, |
|
sigmas, |
|
mu=mu, |
|
) |
|
|
|
if modulation_input is not None: |
|
delta_embs = [] |
|
delta_embs_pblock = [] |
|
delta_embs_mask = [] |
|
for i, t in enumerate(timesteps): |
|
t = t.expand(1).to(torch.bfloat16) / 1000 |
|
( |
|
delta_emb, delta_emb_pblock, delta_emb_mask, |
|
text_cond_mask, delta_start_ends, |
|
condition_latents, condition_ids |
|
) = get_mod_emb(modulation_input, t) |
|
delta_embs.append(delta_emb) |
|
delta_embs_pblock.append(delta_emb_pblock) |
|
delta_embs_mask.append(delta_emb_mask) |
|
|
|
if original_image is not None: |
|
raise NotImplementedError() |
|
(target_height, target_width), closest_ratio = get_closest_ratio(original_image.height, original_image.width, train_aspect_ratios) |
|
elif modulation_input is None or len(modulation_input) == 0: |
|
delta_emb = delta_emb_pblock = delta_emb_mask = None |
|
else: |
|
for i, t in enumerate(timesteps): |
|
t = t.expand(1).to(torch.bfloat16) / 1000 |
|
( |
|
delta_emb, delta_emb_pblock, delta_emb_mask, |
|
text_cond_mask, delta_start_ends, |
|
condition_latents, condition_ids |
|
) = get_mod_emb(modulation_input, t) |
|
delta_embs.append(delta_emb) |
|
delta_embs_pblock.append(delta_emb_pblock) |
|
delta_embs_mask.append(delta_emb_mask) |
|
|
|
if target_height is None or target_width is None: |
|
target_height = target_width = target_size |
|
|
|
if condition_pad_to == "square": |
|
condition_imgs = [pad_to_square(x) for x in condition_imgs] |
|
elif condition_pad_to == "target": |
|
condition_imgs = [pad_to_target(x, (target_size, target_size)) for x in condition_imgs] |
|
condition_imgs = [x.resize((condition_size, condition_size)).convert("RGB") for x in condition_imgs] |
|
|
|
conditions = [ |
|
Condition( |
|
condition_type=condition_type, |
|
condition=x, |
|
position_delta=position_delta, |
|
) for x in condition_imgs |
|
] |
|
|
|
|
|
use_perblock_adapter = False |
|
try: |
|
if config["model"]["modulation"]["use_perblock_adapter"]: |
|
use_perblock_adapter = True |
|
except Exception as e: |
|
pass |
|
|
|
results = [] |
|
for i in range(num_images): |
|
clear_attn_maps(pipe.transformer) |
|
generator = torch.Generator(device=device) |
|
generator.manual_seed(seed + i) |
|
if modulation_input is None or len(modulation_input) == 0: |
|
idips = None |
|
else: |
|
idips = ["human" in p["image_path"] for p in modulation_input[0]["src_inputs"]] |
|
if len(modulation_input[0]["use_words"][0])==5: |
|
print("use idips in use_words") |
|
idips = [x[-1] for x in modulation_input[0]["use_words"]] |
|
result_img = generate( |
|
pipe, |
|
prompt=prompt, |
|
num_inference_steps=num_inference_steps, |
|
max_sequence_length=max_length, |
|
vae_conditions=conditions, |
|
generator=generator, |
|
model_config=config["model"], |
|
height=target_height, |
|
width=target_width, |
|
condition_pad_to=condition_pad_to, |
|
condition_size=condition_size, |
|
text_cond_mask=text_cond_mask, |
|
delta_emb=delta_embs, |
|
delta_emb_pblock=delta_embs_pblock if use_perblock_adapter else None, |
|
delta_emb_mask=delta_embs_mask, |
|
delta_start_ends=delta_start_ends, |
|
condition_latents=condition_latents, |
|
condition_ids=condition_ids, |
|
mod_adapter=pipe.modulation_adapters[0] if config["model"]["modulation"]["use_dit"] else None, |
|
vae_skip_iter=vae_skip_iter, |
|
control_weight_lambda=control_weight_lambda, |
|
double_attention=double_attention, |
|
single_attention=single_attention, |
|
ip_scale=ip_scale, |
|
use_latent_sblora_control=use_latent_sblora_control, |
|
latent_sblora_scale=latent_sblora_scale, |
|
use_condition_sblora_control=use_condition_sblora_control, |
|
condition_sblora_scale=condition_sblora_scale, |
|
idips=idips if use_idip else None, |
|
**kargs, |
|
).images[0] |
|
|
|
final_image = result_img |
|
results.append(final_image) |
|
|
|
if num_images == 1: |
|
return results[0] |
|
return results |