File size: 8,497 Bytes
1814d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d3cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import spaces
import os
import subprocess
import tempfile
import uuid
import glob
import shutil
import time
import gradio as gr
import sys
from PIL import Image

def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0"
    print("==> finished installation")
    
install_cuda_toolkit()


import os
import torch
import numpy as np
import trimesh
from pytorch3d.io import load_obj
from pixel3dmm.tracking.renderer_nvdiffrast import NVDRenderer
from pixel3dmm.tracking.flame.FLAME import FLAME
from pixel3dmm.tracking.tracker import Tracker
from pixel3dmm import env_paths
from omegaconf import OmegaConf


DEVICE = "cuda"

base_conf = OmegaConf.load(f'{env_paths.CODE_BASE}/configs/tracking.yaml')

_mesh_file = env_paths.head_template
flame_model = FLAME(base_conf).to(DEVICE)

_obj_faces = load_obj(_mesh_file)[1]

diff_renderer = NVDRenderer(
    image_size=base_conf.size, 
    obj_filename=_mesh_file,
    no_sh=False,
    white_bg=True
).to(DEVICE)


# Utility to select first image from a folder
def first_image_from_dir(directory):
    patterns = ["*.jpg", "*.png", "*.jpeg"]
    files = []
    for p in patterns:
        files.extend(glob.glob(os.path.join(directory, p)))
    if not files:
        return None
    return sorted(files)[0]

# Function to reset the UI and state
def reset_all():
    return (
        None,  # crop_img
        None,  # normals_img
        None,  # uv_img
        None,  # track_img
        "Awaiting new image upload...",  # status
        {},    # state
        gr.update(interactive=True),   # preprocess_btn
        gr.update(interactive=False),  # normals_btn
        gr.update(interactive=False),  # uv_map_btn
        gr.update(interactive=False)   # track_btn
    )

# Step 1: Preprocess the input image (Save and Crop)
# @spaces.GPU()
def preprocess_image(image_array, state):
    if image_array is None:
        return "❌ Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False)

    session_id = str(uuid.uuid4())
    base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
    os.makedirs(base_dir, exist_ok=True)
    state.update({"session_id": session_id, "base_dir": base_dir})

    img = Image.fromarray(image_array)
    saved_image_path = os.path.join(base_dir, f"{session_id}.png")
    img.save(saved_image_path)
    state["image_path"] = saved_image_path
    
    try:
        p = subprocess.run([
            "python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
        ], check=True, capture_output=True, text=True)
    except subprocess.CalledProcessError as e:
        err = f"❌ Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
        shutil.rmtree(base_dir)
        return err, None, {}, gr.update(interactive=True), gr.update(interactive=False)

    crop_dir = os.path.join(base_dir, "cropped")
    image = first_image_from_dir(crop_dir)
    return "βœ… Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True)

# Step 2: Normals inference β†’ normals image
@spaces.GPU()
def step2_normals(state):
    session_id = state.get("session_id")
    if not session_id:
        return "❌ State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)

    try:
        p = subprocess.run([
            "python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}"
        ], check=True, capture_output=True, text=True)
    except subprocess.CalledProcessError as e:
        err = f"❌ Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
        return err, None, state, gr.update(interactive=True), gr.update(interactive=False)

    normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
    image = first_image_from_dir(normals_dir)
    return "βœ… Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True)

# Step 3: UV map inference β†’ uv map image
@spaces.GPU()
def step3_uv_map(state):
    session_id = state.get("session_id")
    if not session_id:
        return "❌ State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)

    try:
        p = subprocess.run([
            "python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}"
        ], check=True, capture_output=True, text=True)
    except subprocess.CalledProcessError as e:
        err = f"❌ UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
        return err, None, state, gr.update(interactive=True), gr.update(interactive=False)

    uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
    image = first_image_from_dir(uv_dir)
    return "βœ… Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True)

# Step 4: Tracking β†’ final tracking image
@spaces.GPU()
def step4_track(state):
    session_id = state.get("session_id")
    base_conf.video_name = f'{session_id}'
    tracker = Tracker(base_conf, flame_model, diff_renderer)
    tracker.run()

    tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
    image = first_image_from_dir(tracking_dir)

    return "βœ… Pipeline complete!", image, state, gr.update(interactive=False)

# Build Gradio UI
demo = gr.Blocks()

with demo:
    gr.Markdown("## Image Processing Pipeline")
    gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.")
    with gr.Row():
        with gr.Column():
            image_in = gr.Image(label="Upload Image", type="numpy", height=512)
            status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.")
            state = gr.State({})
        with gr.Column():
            with gr.Row():
                crop_img = gr.Image(label="Preprocessed", height=256)
                normals_img = gr.Image(label="Normals", height=256)
            with gr.Row():
                uv_img = gr.Image(label="UV Map", height=256)
                track_img = gr.Image(label="Tracking", height=256)

    with gr.Row():
        preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
        normals_btn = gr.Button("Step 2: Normals", interactive=False)
        uv_map_btn = gr.Button("Step 3: UV Map", interactive=False)
        track_btn = gr.Button("Step 4: Track", interactive=False)

    # Define component list for reset
    outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]

    # Pipeline execution logic
    preprocess_btn.click(
        fn=preprocess_image,
        inputs=[image_in, state],
        outputs=[status, crop_img, state, preprocess_btn, normals_btn]
    )
    normals_btn.click(
        fn=step2_normals,
        inputs=[state],
        outputs=[status, normals_img, state, normals_btn, uv_map_btn]
    )
    uv_map_btn.click(
        fn=step3_uv_map,
        inputs=[state],
        outputs=[status, uv_img, state, uv_map_btn, track_btn]
    )
    track_btn.click(
        fn=step4_track,
        inputs=[state],
        outputs=[status, track_img, state, track_btn]
    )

    # Event to reset everything when a new image is uploaded
    image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset)

# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()
demo.launch(share=True, ssr_mode=False)