Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,259 Bytes
480e656 98dd4d1 e2cec11 b94a387 fe8ccea d38ca73 27d9c8d fe8ccea e2cec11 98dd4d1 3854f27 98dd4d1 199cd31 480e656 88adfac 9c0c48e 480e656 88adfac e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 85d5435 e2cec11 85d5435 e2cec11 85d5435 e2cec11 85d5435 480e656 e2cec11 480e656 e2cec11 151e5f8 e2cec11 480e656 aeb7259 e2cec11 aeb7259 e2cec11 aeb7259 e2cec11 85d5435 480e656 e2cec11 151e5f8 e2cec11 480e656 aeb7259 e2cec11 aeb7259 e2cec11 aeb7259 e2cec11 85d5435 480e656 e2cec11 480e656 e2cec11 ad7c9e8 e2cec11 480e656 e2cec11 480e656 e2cec11 85d5435 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 ccb577d 480e656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import spaces
import os
import subprocess
import tempfile
import uuid
import glob
import shutil
import time
import gradio as gr
import sys
from PIL import Image
# Set environment variables
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
def sh(cmd): subprocess.check_call(cmd, shell=True)
# only do this once per VM restart
sh("pip install -e .")
sh("cd src/pixel3dmm/preprocessing/facer && pip install -e .")
sh("cd src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/utils && sh make.sh")
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0"
print("==> finished installation")
install_cuda_toolkit()
# Utility to select first image from a folder
def first_image_from_dir(directory):
patterns = ["*.jpg", "*.png", "*.jpeg"]
files = []
for p in patterns:
files.extend(glob.glob(os.path.join(directory, p)))
if not files:
return None
return sorted(files)[0]
# Step 1: Preprocess the input image (Save and Crop)
@spaces.GPU()
def preprocess_image(image_array, state):
# Check if an image was uploaded
if image_array is None:
return "β Please upload an image first.", None, state
# Step 1a: Save the uploaded image
session_id = str(uuid.uuid4())
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
os.makedirs(base_dir, exist_ok=True)
state.update({"session_id": session_id, "base_dir": base_dir})
img = Image.fromarray(image_array)
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
img.save(saved_image_path)
state["image_path"] = saved_image_path
# Step 1b: Run the preprocessing script
try:
p = subprocess.run([
"python", "scripts/run_preprocessing.py",
"--video_or_images_path", saved_image_path
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
# Clean up created directory on failure
shutil.rmtree(base_dir)
return err, None, state
crop_dir = os.path.join(base_dir, "cropped")
image = first_image_from_dir(crop_dir)
return "β
Preprocessing complete", image, state
# Step 2: Normals inference β normals image
@spaces.GPU()
def step2_normals(state):
session_id = state.get("session_id")
if not session_id:
return "β Please preprocess an image first.", None, state
try:
# Execute the network inference for normals
p = subprocess.run([
"python", "scripts/network_inference.py",
"model.prediction_type=normals", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
image = first_image_from_dir(normals_dir)
return "β
Step 2: Normals inference complete", image, state
# Step 3: UV map inference β uv map image
@spaces.GPU()
def step3_uv_map(state):
session_id = state.get("session_id")
if not session_id:
return "β Please preprocess an image first.", None, state
try:
# Execute the network inference for UV map
p = subprocess.run([
"python", "scripts/network_inference.py",
"model.prediction_type=uv_map", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
image = first_image_from_dir(uv_dir)
return "β
Step 3: UV map inference complete", image, state
# Step 4: Tracking β final tracking image
@spaces.GPU()
def step4_track(state):
session_id = state.get("session_id")
if not session_id:
return "β Please preprocess an image first.", None, state
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
try:
# Execute the tracking script
p = subprocess.run([
"python", script,
f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
image = first_image_from_dir(tracking_dir)
return "β
Step 4: Tracking complete", image, state
# Build Gradio UI
demo = gr.Blocks()
with demo:
gr.Markdown("## Image Processing Pipeline")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
status = gr.Textbox(label="Status", lines=2, interactive=False)
state = gr.State({})
with gr.Column():
with gr.Row():
crop_img = gr.Image(label="Preprocessed", height=256)
normals_img = gr.Image(label="Normals", height=256)
with gr.Row():
uv_img = gr.Image(label="UV Map", height=256)
track_img = gr.Image(label="Tracking", height=256)
with gr.Row():
preprocess_btn = gr.Button("Step 1: Preprocess")
normals_btn = gr.Button("Step 2: Normals")
uv_map_btn = gr.Button("Step 3: UV Map")
track_btn = gr.Button("Step 4: Track")
# Pipeline execution
preprocess_btn.click(fn=preprocess_image, inputs=[image_in, state], outputs=[status, crop_img, state])
normals_btn.click(fn=step2_normals, inputs=[state], outputs=[status, normals_img, state])
uv_map_btn.click(fn=step3_uv_map, inputs=[state], outputs=[status, uv_img, state])
track_btn.click(fn=step4_track, inputs=[state], outputs=[status, track_img, state])
# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()
demo.launch(share=True, ssr_mode=False)
|