Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,6 @@ def install_cuda_toolkit():
|
|
44 |
|
45 |
install_cuda_toolkit()
|
46 |
|
47 |
-
|
48 |
# Utility to select first image from a folder
|
49 |
def first_image_from_dir(directory):
|
50 |
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
@@ -55,14 +54,27 @@ def first_image_from_dir(directory):
|
|
55 |
return None
|
56 |
return sorted(files)[0]
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# Step 1: Preprocess the input image (Save and Crop)
|
59 |
@spaces.GPU()
|
60 |
def preprocess_image(image_array, state):
|
61 |
-
# Check if an image was uploaded
|
62 |
if image_array is None:
|
63 |
-
return "β Please upload an image first.", None, state
|
64 |
|
65 |
-
# Step 1a: Save the uploaded image
|
66 |
session_id = str(uuid.uuid4())
|
67 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
68 |
os.makedirs(base_dir, exist_ok=True)
|
@@ -73,96 +85,87 @@ def preprocess_image(image_array, state):
|
|
73 |
img.save(saved_image_path)
|
74 |
state["image_path"] = saved_image_path
|
75 |
|
76 |
-
# Step 1b: Run the preprocessing script
|
77 |
try:
|
78 |
p = subprocess.run([
|
79 |
-
"python", "scripts/run_preprocessing.py",
|
80 |
-
"--video_or_images_path", saved_image_path
|
81 |
], check=True, capture_output=True, text=True)
|
82 |
except subprocess.CalledProcessError as e:
|
83 |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
84 |
-
# Clean up created directory on failure
|
85 |
shutil.rmtree(base_dir)
|
86 |
-
return err, None,
|
87 |
|
88 |
crop_dir = os.path.join(base_dir, "cropped")
|
89 |
image = first_image_from_dir(crop_dir)
|
90 |
-
return "β
|
91 |
-
|
92 |
|
93 |
# Step 2: Normals inference β normals image
|
94 |
@spaces.GPU()
|
95 |
def step2_normals(state):
|
96 |
session_id = state.get("session_id")
|
97 |
if not session_id:
|
98 |
-
return "β Please
|
99 |
|
100 |
try:
|
101 |
-
# Execute the network inference for normals
|
102 |
p = subprocess.run([
|
103 |
-
"python", "scripts/network_inference.py",
|
104 |
-
"model.prediction_type=normals", f"video_name={session_id}"
|
105 |
], check=True, capture_output=True, text=True)
|
106 |
except subprocess.CalledProcessError as e:
|
107 |
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
108 |
-
return err, None, state
|
109 |
|
110 |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
111 |
image = first_image_from_dir(normals_dir)
|
112 |
-
return "β
Step 2
|
113 |
|
114 |
# Step 3: UV map inference β uv map image
|
115 |
@spaces.GPU()
|
116 |
def step3_uv_map(state):
|
117 |
session_id = state.get("session_id")
|
118 |
if not session_id:
|
119 |
-
return "β Please
|
120 |
|
121 |
try:
|
122 |
-
# Execute the network inference for UV map
|
123 |
p = subprocess.run([
|
124 |
-
"python", "scripts/network_inference.py",
|
125 |
-
"model.prediction_type=uv_map", f"video_name={session_id}"
|
126 |
], check=True, capture_output=True, text=True)
|
127 |
except subprocess.CalledProcessError as e:
|
128 |
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
129 |
-
return err, None, state
|
130 |
|
131 |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
132 |
image = first_image_from_dir(uv_dir)
|
133 |
-
return "β
Step 3
|
134 |
|
135 |
# Step 4: Tracking β final tracking image
|
136 |
@spaces.GPU()
|
137 |
def step4_track(state):
|
138 |
session_id = state.get("session_id")
|
139 |
if not session_id:
|
140 |
-
return "β Please
|
141 |
|
142 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
143 |
try:
|
144 |
-
# Execute the tracking script
|
145 |
p = subprocess.run([
|
146 |
-
"python", script,
|
147 |
-
f"video_name={session_id}"
|
148 |
], check=True, capture_output=True, text=True)
|
149 |
except subprocess.CalledProcessError as e:
|
150 |
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
151 |
-
return err, None, state
|
152 |
|
153 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
154 |
image = first_image_from_dir(tracking_dir)
|
155 |
-
return "β
|
156 |
|
157 |
# Build Gradio UI
|
158 |
demo = gr.Blocks()
|
159 |
|
160 |
with demo:
|
161 |
gr.Markdown("## Image Processing Pipeline")
|
|
|
162 |
with gr.Row():
|
163 |
with gr.Column():
|
164 |
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
165 |
-
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
166 |
state = gr.State({})
|
167 |
with gr.Column():
|
168 |
with gr.Row():
|
@@ -173,21 +176,41 @@ with demo:
|
|
173 |
track_img = gr.Image(label="Tracking", height=256)
|
174 |
|
175 |
with gr.Row():
|
176 |
-
preprocess_btn = gr.Button("Step 1: Preprocess")
|
177 |
-
normals_btn = gr.Button("Step 2: Normals")
|
178 |
-
uv_map_btn = gr.Button("Step 3: UV Map")
|
179 |
-
track_btn = gr.Button("Step 4: Track")
|
180 |
-
|
181 |
-
#
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
|
|
|
|
187 |
|
188 |
# ------------------------------------------------------------------
|
189 |
# START THE GRADIO SERVER
|
190 |
# ------------------------------------------------------------------
|
191 |
demo.queue()
|
192 |
-
demo.launch(share=True, ssr_mode=False)
|
193 |
-
|
|
|
44 |
|
45 |
install_cuda_toolkit()
|
46 |
|
|
|
47 |
# Utility to select first image from a folder
|
48 |
def first_image_from_dir(directory):
|
49 |
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
|
|
54 |
return None
|
55 |
return sorted(files)[0]
|
56 |
|
57 |
+
# Function to reset the UI and state
|
58 |
+
def reset_all():
|
59 |
+
return (
|
60 |
+
None, # crop_img
|
61 |
+
None, # normals_img
|
62 |
+
None, # uv_img
|
63 |
+
None, # track_img
|
64 |
+
"Awaiting new image upload...", # status
|
65 |
+
{}, # state
|
66 |
+
gr.update(interactive=True), # preprocess_btn
|
67 |
+
gr.update(interactive=False), # normals_btn
|
68 |
+
gr.update(interactive=False), # uv_map_btn
|
69 |
+
gr.update(interactive=False) # track_btn
|
70 |
+
)
|
71 |
+
|
72 |
# Step 1: Preprocess the input image (Save and Crop)
|
73 |
@spaces.GPU()
|
74 |
def preprocess_image(image_array, state):
|
|
|
75 |
if image_array is None:
|
76 |
+
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False)
|
77 |
|
|
|
78 |
session_id = str(uuid.uuid4())
|
79 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
80 |
os.makedirs(base_dir, exist_ok=True)
|
|
|
85 |
img.save(saved_image_path)
|
86 |
state["image_path"] = saved_image_path
|
87 |
|
|
|
88 |
try:
|
89 |
p = subprocess.run([
|
90 |
+
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
|
|
|
91 |
], check=True, capture_output=True, text=True)
|
92 |
except subprocess.CalledProcessError as e:
|
93 |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
94 |
shutil.rmtree(base_dir)
|
95 |
+
return err, None, {}, gr.update(interactive=True), gr.update(interactive=False)
|
96 |
|
97 |
crop_dir = os.path.join(base_dir, "cropped")
|
98 |
image = first_image_from_dir(crop_dir)
|
99 |
+
return "β
Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
|
|
100 |
|
101 |
# Step 2: Normals inference β normals image
|
102 |
@spaces.GPU()
|
103 |
def step2_normals(state):
|
104 |
session_id = state.get("session_id")
|
105 |
if not session_id:
|
106 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
107 |
|
108 |
try:
|
|
|
109 |
p = subprocess.run([
|
110 |
+
"python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}"
|
|
|
111 |
], check=True, capture_output=True, text=True)
|
112 |
except subprocess.CalledProcessError as e:
|
113 |
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
114 |
+
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
|
115 |
|
116 |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
117 |
image = first_image_from_dir(normals_dir)
|
118 |
+
return "β
Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
119 |
|
120 |
# Step 3: UV map inference β uv map image
|
121 |
@spaces.GPU()
|
122 |
def step3_uv_map(state):
|
123 |
session_id = state.get("session_id")
|
124 |
if not session_id:
|
125 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
126 |
|
127 |
try:
|
|
|
128 |
p = subprocess.run([
|
129 |
+
"python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}"
|
|
|
130 |
], check=True, capture_output=True, text=True)
|
131 |
except subprocess.CalledProcessError as e:
|
132 |
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
133 |
+
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
|
134 |
|
135 |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
136 |
image = first_image_from_dir(uv_dir)
|
137 |
+
return "β
Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
138 |
|
139 |
# Step 4: Tracking β final tracking image
|
140 |
@spaces.GPU()
|
141 |
def step4_track(state):
|
142 |
session_id = state.get("session_id")
|
143 |
if not session_id:
|
144 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False)
|
145 |
|
146 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
147 |
try:
|
|
|
148 |
p = subprocess.run([
|
149 |
+
"python", script, f"video_name={session_id}"
|
|
|
150 |
], check=True, capture_output=True, text=True)
|
151 |
except subprocess.CalledProcessError as e:
|
152 |
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
153 |
+
return err, None, state, gr.update(interactive=True)
|
154 |
|
155 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
156 |
image = first_image_from_dir(tracking_dir)
|
157 |
+
return "β
Pipeline complete!", image, state, gr.update(interactive=False)
|
158 |
|
159 |
# Build Gradio UI
|
160 |
demo = gr.Blocks()
|
161 |
|
162 |
with demo:
|
163 |
gr.Markdown("## Image Processing Pipeline")
|
164 |
+
gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.")
|
165 |
with gr.Row():
|
166 |
with gr.Column():
|
167 |
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
168 |
+
status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.")
|
169 |
state = gr.State({})
|
170 |
with gr.Column():
|
171 |
with gr.Row():
|
|
|
176 |
track_img = gr.Image(label="Tracking", height=256)
|
177 |
|
178 |
with gr.Row():
|
179 |
+
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
|
180 |
+
normals_btn = gr.Button("Step 2: Normals", interactive=False)
|
181 |
+
uv_map_btn = gr.Button("Step 3: UV Map", interactive=False)
|
182 |
+
track_btn = gr.Button("Step 4: Track", interactive=False)
|
183 |
+
|
184 |
+
# Define component list for reset
|
185 |
+
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
|
186 |
+
|
187 |
+
# Pipeline execution logic
|
188 |
+
preprocess_btn.click(
|
189 |
+
fn=preprocess_image,
|
190 |
+
inputs=[image_in, state],
|
191 |
+
outputs=[status, crop_img, state, preprocess_btn, normals_btn]
|
192 |
+
)
|
193 |
+
normals_btn.click(
|
194 |
+
fn=step2_normals,
|
195 |
+
inputs=[state],
|
196 |
+
outputs=[status, normals_img, state, normals_btn, uv_map_btn]
|
197 |
+
)
|
198 |
+
uv_map_btn.click(
|
199 |
+
fn=step3_uv_map,
|
200 |
+
inputs=[state],
|
201 |
+
outputs=[status, uv_img, state, uv_map_btn, track_btn]
|
202 |
+
)
|
203 |
+
track_btn.click(
|
204 |
+
fn=step4_track,
|
205 |
+
inputs=[state],
|
206 |
+
outputs=[status, track_img, state, track_btn]
|
207 |
+
)
|
208 |
|
209 |
+
# Event to reset everything when a new image is uploaded
|
210 |
+
image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset)
|
211 |
|
212 |
# ------------------------------------------------------------------
|
213 |
# START THE GRADIO SERVER
|
214 |
# ------------------------------------------------------------------
|
215 |
demo.queue()
|
216 |
+
demo.launch(share=True, ssr_mode=False)
|
|