Spaces:
Running
Running
import torch | |
#from transformers import pipeline | |
#from transformers.pipelines.audio_utils import ffmpeg_read | |
from speechscore import SpeechScore | |
import gradio as gr | |
MODEL_NAME = "alibabasglab/speechscore" | |
BATCH_SIZE = 1 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
mySpeechScore = SpeechScore([ | |
'SRMR' | |
]) | |
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds | |
def score(file, task, return_timestamps): | |
scores = mySpeechScore(test_path=file, reference_path=None, window=None, score_rate=16000, return_mean=True) | |
return scores | |
demo = gr.Blocks() | |
mic_score = gr.Interface( | |
fn=score, | |
inputs=[ | |
gr.Audio(sources=["microphone"], | |
waveform_options=gr.WaveformOptions( | |
waveform_color="#01C6FF", | |
waveform_progress_color="#0066B4", | |
skip_length=2, | |
show_controls=False, | |
), | |
), | |
gr.Radio(["absolute_score", "relative_score"], label="Task", default="absolute_score"), | |
gr.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Score speech from microphone", | |
description=( | |
"Score audio inputs with the click of a button! Demo uses the" | |
" commonly used speech quality assessment methods for the audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
file_score = gr.Interface( | |
fn=score, | |
inputs=[ | |
gr.Audio(sources=["upload"], optional=True, label="Audio file", type="filepath"), | |
gr.Radio(["absolute_score", "relative_score"], label="Task", default="absolute_score"), | |
gr.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Score speech from a file", | |
description=( | |
"Score audio inputs with the click of a button! Demo uses the" | |
" commonly used speech quality assessment methods for the audio files" | |
" of arbitrary length." | |
), | |
examples=[ | |
["./example.flac", "score", False], | |
["./example.flac", "score", True], | |
], | |
cache_examples=True, | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mic_score, file_score], ["Score Microphone", "Score Audio File"]) | |
demo.launch(enable_queue=True) |