comparative-explainability
/
Transformer-Explainability
/BERT_explainability
/modules
/BERT
/ExplanationGenerator.py
import argparse | |
import glob | |
import numpy as np | |
import torch | |
# compute rollout between attention layers | |
def compute_rollout_attention(all_layer_matrices, start_layer=0): | |
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow | |
num_tokens = all_layer_matrices[0].shape[1] | |
batch_size = all_layer_matrices[0].shape[0] | |
eye = ( | |
torch.eye(num_tokens) | |
.expand(batch_size, num_tokens, num_tokens) | |
.to(all_layer_matrices[0].device) | |
) | |
all_layer_matrices = [ | |
all_layer_matrices[i] + eye for i in range(len(all_layer_matrices)) | |
] | |
matrices_aug = [ | |
all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) | |
for i in range(len(all_layer_matrices)) | |
] | |
joint_attention = matrices_aug[start_layer] | |
for i in range(start_layer + 1, len(matrices_aug)): | |
joint_attention = matrices_aug[i].bmm(joint_attention) | |
return joint_attention | |
class Generator: | |
def __init__(self, model): | |
self.model = model | |
self.model.eval() | |
def forward(self, input_ids, attention_mask): | |
return self.model(input_ids, attention_mask) | |
def generate_LRP(self, input_ids, attention_mask, index=None, start_layer=11): | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
kwargs = {"alpha": 1} | |
if index == None: | |
index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | |
one_hot[0, index] = 1 | |
one_hot_vector = one_hot | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot.cuda() * output) | |
self.model.zero_grad() | |
one_hot.backward(retain_graph=True) | |
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs) | |
cams = [] | |
blocks = self.model.bert.encoder.layer | |
for blk in blocks: | |
grad = blk.attention.self.get_attn_gradients() | |
cam = blk.attention.self.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cams.append(cam.unsqueeze(0)) | |
rollout = compute_rollout_attention(cams, start_layer=start_layer) | |
rollout[:, 0, 0] = rollout[:, 0].min() | |
return rollout[:, 0] | |
def generate_LRP_last_layer(self, input_ids, attention_mask, index=None): | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
kwargs = {"alpha": 1} | |
if index == None: | |
index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | |
one_hot[0, index] = 1 | |
one_hot_vector = one_hot | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot.cuda() * output) | |
self.model.zero_grad() | |
one_hot.backward(retain_graph=True) | |
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs) | |
cam = self.model.bert.encoder.layer[-1].attention.self.get_attn_cam()[0] | |
cam = cam.clamp(min=0).mean(dim=0).unsqueeze(0) | |
cam[:, 0, 0] = 0 | |
return cam[:, 0] | |
def generate_full_lrp(self, input_ids, attention_mask, index=None): | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
kwargs = {"alpha": 1} | |
if index == None: | |
index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | |
one_hot[0, index] = 1 | |
one_hot_vector = one_hot | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot.cuda() * output) | |
self.model.zero_grad() | |
one_hot.backward(retain_graph=True) | |
cam = self.model.relprop( | |
torch.tensor(one_hot_vector).to(input_ids.device), **kwargs | |
) | |
cam = cam.sum(dim=2) | |
cam[:, 0] = 0 | |
return cam | |
def generate_attn_last_layer(self, input_ids, attention_mask, index=None): | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
cam = self.model.bert.encoder.layer[-1].attention.self.get_attn()[0] | |
cam = cam.mean(dim=0).unsqueeze(0) | |
cam[:, 0, 0] = 0 | |
return cam[:, 0] | |
def generate_rollout(self, input_ids, attention_mask, start_layer=0, index=None): | |
self.model.zero_grad() | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
blocks = self.model.bert.encoder.layer | |
all_layer_attentions = [] | |
for blk in blocks: | |
attn_heads = blk.attention.self.get_attn() | |
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() | |
all_layer_attentions.append(avg_heads) | |
rollout = compute_rollout_attention( | |
all_layer_attentions, start_layer=start_layer | |
) | |
rollout[:, 0, 0] = 0 | |
return rollout[:, 0] | |
def generate_attn_gradcam(self, input_ids, attention_mask, index=None): | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
kwargs = {"alpha": 1} | |
if index == None: | |
index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | |
one_hot[0, index] = 1 | |
one_hot_vector = one_hot | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot.cuda() * output) | |
self.model.zero_grad() | |
one_hot.backward(retain_graph=True) | |
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs) | |
cam = self.model.bert.encoder.layer[-1].attention.self.get_attn() | |
grad = self.model.bert.encoder.layer[-1].attention.self.get_attn_gradients() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
grad = grad.mean(dim=[1, 2], keepdim=True) | |
cam = (cam * grad).mean(0).clamp(min=0).unsqueeze(0) | |
cam = (cam - cam.min()) / (cam.max() - cam.min()) | |
cam[:, 0, 0] = 0 | |
return cam[:, 0] | |