Spaces:
Sleeping
Sleeping
class Configuration: | |
def __init__(self, config_dict): | |
self.rows = config_dict["rows"] | |
self.columns = config_dict["columns"] | |
self.inarow = config_dict["inarow"] | |
class Observation: | |
def __init__(self, obs_dict): | |
self.board = obs_dict["board"] | |
self.mark = obs_dict["mark"] | |
def my_agent(observation, configuration): | |
""" | |
ConnectX agent using Minimax algorithm with alpha-beta pruning | |
Args: | |
observation: Current game state | |
configuration: Game configuration | |
Returns: | |
Column number (0-based) where to drop the piece | |
""" | |
import numpy as np | |
# Constants | |
EMPTY = 0 | |
MAX_DEPTH = 6 # Search depth limit | |
INFINITY = float('inf') | |
def make_board(obs): | |
"""Convert observation to 2D numpy array""" | |
return np.asarray(obs.board).reshape(configuration.rows, configuration.columns) | |
def get_valid_moves(board): | |
"""Get list of valid moves (columns that aren't full)""" | |
return [col for col in range(configuration.columns) if board[0][col] == EMPTY] | |
def drop_piece(board, col, piece): | |
"""Drop piece in specified column and return row position""" | |
row = np.where(board[:, col] == EMPTY)[0][-1] | |
board[row, col] = piece | |
return row | |
def check_window(window, piece, inarow): | |
""" | |
Score a window of positions | |
Higher scores for more pieces in a row and potential winning moves | |
Negative scores for opponent's threatening positions | |
""" | |
score = 0 | |
opp_piece = 1 if piece == 2 else 2 | |
# Winning position | |
if np.count_nonzero(window == piece) == inarow: | |
score += 100 | |
# One move away from winning | |
elif np.count_nonzero(window == piece) == (inarow - 1) and np.count_nonzero(window == EMPTY) == 1: | |
score += 10 | |
# Two moves away from winning | |
elif np.count_nonzero(window == piece) == (inarow - 2) and np.count_nonzero(window == EMPTY) == 2: | |
score += 5 | |
# Opponent one move away from winning - defensive move needed | |
if np.count_nonzero(window == opp_piece) == (inarow - 1) and np.count_nonzero(window == EMPTY) == 1: | |
score -= 80 | |
return score | |
def score_position(board, piece): | |
""" | |
Score entire board position | |
Considers horizontal, vertical, and diagonal possibilities | |
Extra weight for center column control | |
""" | |
score = 0 | |
# Horizontal windows | |
for row in range(configuration.rows): | |
for col in range(configuration.columns - (configuration.inarow - 1)): | |
window = board[row, col:col + configuration.inarow] | |
score += check_window(window, piece, configuration.inarow) | |
# Vertical windows | |
for row in range(configuration.rows - (configuration.inarow - 1)): | |
for col in range(configuration.columns): | |
window = board[row:row + configuration.inarow, col] | |
score += check_window(window, piece, configuration.inarow) | |
# Positive diagonal windows | |
for row in range(configuration.rows - (configuration.inarow - 1)): | |
for col in range(configuration.columns - (configuration.inarow - 1)): | |
window = [board[row + i][col + i] for i in range(configuration.inarow)] | |
score += check_window(window, piece, configuration.inarow) | |
# Negative diagonal windows | |
for row in range(configuration.inarow - 1, configuration.rows): | |
for col in range(configuration.columns - (configuration.inarow - 1)): | |
window = [board[row - i][col + i] for i in range(configuration.inarow)] | |
score += check_window(window, piece, configuration.inarow) | |
# Center column control bonus | |
center_array = board[:, configuration.columns//2] | |
center_count = np.count_nonzero(center_array == piece) | |
score += center_count * 6 | |
return score | |
def is_terminal_node(board): | |
"""Check if current position is terminal (game over)""" | |
# Check horizontal wins | |
for row in range(configuration.rows): | |
for col in range(configuration.columns - (configuration.inarow - 1)): | |
window = list(board[row, col:col + configuration.inarow]) | |
if window.count(1) == configuration.inarow or window.count(2) == configuration.inarow: | |
return True | |
# Check vertical wins | |
for row in range(configuration.rows - (configuration.inarow - 1)): | |
for col in range(configuration.columns): | |
window = list(board[row:row + configuration.inarow, col]) | |
if window.count(1) == configuration.inarow or window.count(2) == configuration.inarow: | |
return True | |
# Check if board is full | |
return len(get_valid_moves(board)) == 0 | |
def minimax(board, depth, alpha, beta, maximizing_player): | |
""" | |
Minimax algorithm with alpha-beta pruning | |
Returns best move and its score | |
""" | |
valid_moves = get_valid_moves(board) | |
is_terminal = is_terminal_node(board) | |
# Base cases: max depth reached or terminal position | |
if depth == 0 or is_terminal: | |
if is_terminal: | |
return (None, -INFINITY if maximizing_player else INFINITY) | |
else: | |
return (None, score_position(board, observation.mark)) | |
if maximizing_player: | |
value = -INFINITY | |
column = np.random.choice(valid_moves) | |
for col in valid_moves: | |
board_copy = board.copy() | |
drop_piece(board_copy, col, observation.mark) | |
new_score = minimax(board_copy, depth-1, alpha, beta, False)[1] | |
if new_score > value: | |
value = new_score | |
column = col | |
alpha = max(alpha, value) | |
if alpha >= beta: | |
break | |
return column, value | |
else: | |
value = INFINITY | |
column = np.random.choice(valid_moves) | |
opponent_piece = 1 if observation.mark == 2 else 2 | |
for col in valid_moves: | |
board_copy = board.copy() | |
drop_piece(board_copy, col, opponent_piece) | |
new_score = minimax(board_copy, depth-1, alpha, beta, True)[1] | |
if new_score < value: | |
value = new_score | |
column = col | |
beta = min(beta, value) | |
if alpha >= beta: | |
break | |
return column, value | |
# Main game logic | |
board = make_board(observation) | |
valid_moves = get_valid_moves(board) | |
# First move: take center column | |
if len(np.where(board != 0)[0]) == 0: | |
return configuration.columns // 2 | |
# Check for immediate winning moves | |
for col in valid_moves: | |
board_copy = board.copy() | |
drop_piece(board_copy, col, observation.mark) | |
if is_terminal_node(board_copy): | |
return col | |
# Use minimax to find best move | |
column, minimax_score = minimax(board, MAX_DEPTH, -INFINITY, INFINITY, True) | |
return column |