File size: 7,800 Bytes
5e2f43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200ca5f
5e2f43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200ca5f
5e2f43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import os
import torch
import json
import pandas as pd
from datasets import Dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    DataCollatorForLanguageModeling
)
from peft import (
    LoraConfig,
    get_peft_model,
    prepare_model_for_kbit_training,
    PeftModel
)
import spaces

# Set environment variable for cache directory
os.environ['TRANSFORMERS_CACHE'] = '/tmp/hf_cache'
os.makedirs('/tmp/hf_cache', exist_ok=True)

def sample_from_csv(csv_file, sample_size=100):
    """Sample from CSV file and format for training"""
    df = pd.read_csv(csv_file)
    
    # Display CSV info
    print(f"CSV columns: {df.columns.tolist()}")
    print(f"Total rows in CSV: {len(df)}")
    
    # Try to identify teacher and student columns
    teacher_col = None
    student_col = None
    
    for col in df.columns:
        col_lower = col.lower()
        if 'teacher' in col_lower or 'instructor' in col_lower or 'prompt' in col_lower:
            teacher_col = col
        elif 'student' in col_lower or 'response' in col_lower or 'answer' in col_lower:
            student_col = col
    
    # If we couldn't identify columns, use the first two
    if teacher_col is None or student_col is None:
        teacher_col = df.columns[0]
        student_col = df.columns[1]
    
    # Sample rows
    if sample_size >= len(df):
        sampled_df = df
    else:
        sampled_df = df.sample(n=sample_size, random_state=42)
    
    # Format data
    texts = []
    for _, row in sampled_df.iterrows():
        teacher_text = str(row[teacher_col]).strip()
        student_text = str(row[student_col]).strip()
        
        # Skip rows with empty values
        if not teacher_text or not student_text or teacher_text == 'nan' or student_text == 'nan':
            continue
            
        # Format according to the document format:
        # <s> [INST] Teacher ** <Dialogue> [/INST] Student** <Dialogue> </s>
        formatted_text = f"<s> [INST] Teacher ** {teacher_text} [/INST] Student** {student_text} </s>"
        texts.append(formatted_text)
    
    return Dataset.from_dict({"text": texts})

@spaces.GPU
def finetune_model(csv_file, sample_size=100, num_epochs=3, progress=gr.Progress()):
    """Fine-tune the model and return results"""
    # Check GPU
    if torch.cuda.is_available():
        print(f"GPU available: {torch.cuda.get_device_name(0)}")
        device = torch.device("cuda")
    else:
        print("No GPU available, fine-tuning will be extremely slow!")
        device = torch.device("cpu")
    
    # Sample data
    progress(0.1, "Sampling data from CSV...")
    dataset = sample_from_csv(csv_file, sample_size)
    
    # Split dataset
    dataset_split = dataset.train_test_split(test_size=0.1)
    
    # Load tokenizer
    progress(0.2, "Loading tokenizer...")
    model_name = "mistralai/Mistral-7B-v0.1"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    tokenizer.pad_token = tokenizer.eos_token
    
    # Tokenize dataset
    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
    
    progress(0.3, "Tokenizing dataset...")
    tokenized_datasets = dataset_split.map(tokenize_function, batched=True)
    
    # Load model with LoRA configuration
    progress(0.4, "Loading model...")
    lora_config = LoraConfig(
        r=8,
        lora_alpha=16,
        target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM"
    )
    
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    
    # Prepare model for LoRA training
    model = prepare_model_for_kbit_training(model)
    model = get_peft_model(model, lora_config)
    
    # Training arguments
    output_dir = "mistral7b_finetuned"
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=num_epochs,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=4,
        save_steps=50,
        logging_steps=10,
        learning_rate=2e-4,
        weight_decay=0.001,
        fp16=True,
        warmup_steps=50,
        lr_scheduler_type="cosine",
        report_to="none",  # Disable wandb
    )
    
    # Initialize trainer
    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["test"],
        data_collator=data_collator,
    )
    
    # Train model
    progress(0.5, "Training model...")
    trainer.train()
    
    # Save model
    progress(0.9, "Saving model...")
    trainer.model.save_pretrained(output_dir)
    tokenizer.save_pretrained(output_dir)
    
    # Test with sample prompts
    progress(0.95, "Testing model...")
    test_prompts = [
        "How was the Math exam?",
        "Good morning students! How are you all?",
        "What should you do if you get into a fight with a friend?",
        "Did you complete your science project?",
        "What did you learn in class today?"
    ]
    
    # Load the fine-tuned model for inference
    fine_tuned_model = PeftModel.from_pretrained(
        model,
        output_dir,
        device_map="auto",
    )
    
    # Generate responses
    results = []
    for prompt in test_prompts:
        formatted_prompt = f"<s> [INST] Teacher ** {prompt} [/INST] Student**"
        inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
        
        with torch.no_grad():
            outputs = fine_tuned_model.generate(
                **inputs,
                max_length=200,
                temperature=0.7,
                top_p=0.95,
                do_sample=True,
            )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        student_part = response.split("Student**")[1].strip() if "Student**" in response else response
        
        results.append({
            "prompt": prompt,
            "response": student_part
        })
    
    # Save results
    with open("test_results.json", "w") as f:
        json.dump(results, f, indent=2)
    
    progress(1.0, "Completed!")
    return results

# Define Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Mistral 7B Fine-Tuning for Student Bot")
    
    with gr.Tab("Fine-tune Model"):
        with gr.Row():
            csv_input = gr.File(label="Upload Teacher-Student CSV")
        
        with gr.Row():
            sample_size = gr.Slider(minimum=10, maximum=1000, value=100, step=10, label="Sample Size")
            epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Epochs")
        
        with gr.Row():
            start_btn = gr.Button("Start Fine-Tuning")
        
        with gr.Row():
            output = gr.JSON(label="Results")
        
        start_btn.click(finetune_model, inputs=[csv_input, sample_size, epochs], outputs=[output])
    
    with gr.Tab("About"):
        gr.Markdown("""
        ## Fine-Tuning Mistral 7B for Student Bot
        
        This app fine-tunes the Mistral 7B model to respond like a student to teacher prompts.
        
        ### Requirements
        - CSV file with teacher-student conversation pairs
        - GPU acceleration (provided by this Space)
        
        ### Process
        1. Upload your CSV file
        2. Set sample size and number of epochs
        3. Click "Start Fine-Tuning"
        4. View test results with sample prompts
        """)

# Launch app
demo.launch()