File size: 1,583 Bytes
9f48851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a530f
9f48851
 
f7a530f
 
 
 
 
 
 
 
9f48851
 
f7a530f
9f48851
 
d1fe2cb
f7a530f
d1fe2cb
f7a530f
 
d1fe2cb
8e14057
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification, TextClassificationPipeline
import uvicorn

# Define FastAPI app
app = FastAPI()

# Load Model on Startup
HUGGINGFACE_MODEL_PATH = "bespin-global/klue-roberta-small-3i4k-intent-classification"

print("Loading model...")  # Log message
try:
    loaded_tokenizer = RobertaTokenizerFast.from_pretrained(HUGGINGFACE_MODEL_PATH)
    loaded_model = RobertaForSequenceClassification.from_pretrained(HUGGINGFACE_MODEL_PATH)

    # Create Text Classification Pipeline
    text_classifier = TextClassificationPipeline(
        tokenizer=loaded_tokenizer,
        model=loaded_model,
        return_all_scores=True
    )
    print("Model loaded successfully.")  # Log message
except Exception as e:
    print(f"Error loading model: {e}")
    text_classifier = None


# Health Check Endpoint
@app.get("/")
def hello():
    return {"Message": "Space is running Good.", "Status": "Healthy"}


# Define Pydantic Model for Input Validation
class PredictionRequest(BaseModel):
    sentence: str


# Prediction Endpoint
@app.post("/predict")
def predict_intent(request: PredictionRequest):
    if text_classifier is None:
        return {"error": "Model not found"}

    sentence = request.sentence.strip()  # Correct way to get JSON input

    preds_list = text_classifier(sentence)
    best_pred = max(preds_list[0], key=lambda x: x["score"])  # Get highest-scoring intent

    return {"predicted_intent": best_pred["label"], "confidence": best_pred["score"]}