|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification, TextClassificationPipeline |
|
import uvicorn |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
HUGGINGFACE_MODEL_PATH = "bespin-global/klue-roberta-small-3i4k-intent-classification" |
|
|
|
print("Loading model...") |
|
try: |
|
loaded_tokenizer = RobertaTokenizerFast.from_pretrained(HUGGINGFACE_MODEL_PATH) |
|
loaded_model = RobertaForSequenceClassification.from_pretrained(HUGGINGFACE_MODEL_PATH) |
|
|
|
|
|
text_classifier = TextClassificationPipeline( |
|
tokenizer=loaded_tokenizer, |
|
model=loaded_model, |
|
return_all_scores=True |
|
) |
|
print("Model loaded successfully.") |
|
except Exception as e: |
|
print(f"Error loading model: {e}") |
|
text_classifier = None |
|
|
|
|
|
|
|
@app.get("/") |
|
def hello(): |
|
return {"Message": "Space is running Good.", "Status": "Healthy"} |
|
|
|
|
|
|
|
class PredictionRequest(BaseModel): |
|
sentence: str |
|
|
|
|
|
|
|
@app.post("/predict") |
|
def predict_intent(request: PredictionRequest): |
|
if text_classifier is None: |
|
return {"error": "Model not found"} |
|
|
|
sentence = request.sentence.strip() |
|
|
|
preds_list = text_classifier(sentence) |
|
best_pred = max(preds_list[0], key=lambda x: x["score"]) |
|
|
|
return {"predicted_intent": best_pred["label"], "confidence": best_pred["score"]} |
|
|