Spaces:
Runtime error
Runtime error
from __future__ import division | |
import torch | |
import numpy as np | |
import cv2 | |
import os.path as osp | |
from bbox import bbox_iou | |
def get_path(cur_file): | |
cur_dir = osp.dirname(osp.realpath(cur_file)) | |
project_root = osp.join(cur_dir, '../../../') | |
chk_root = osp.join(project_root, 'checkpoint/') | |
data_root = osp.join(project_root, 'data/') | |
return project_root, chk_root, data_root, cur_dir | |
def count_parameters(model): | |
return sum(p.numel() for p in model.parameters()) | |
def count_learnable_parameters(model): | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
def convert2cpu(matrix): | |
if matrix.is_cuda: | |
return torch.FloatTensor(matrix.size()).copy_(matrix) | |
else: | |
return matrix | |
def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True): | |
batch_size = prediction.size(0) | |
stride = inp_dim // prediction.size(2) | |
grid_size = inp_dim // stride | |
bbox_attrs = 5 + num_classes | |
num_anchors = len(anchors) | |
anchors = [(a[0]/stride, a[1]/stride) for a in anchors] | |
prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size) | |
prediction = prediction.transpose(1, 2).contiguous() | |
prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs) | |
# Sigmoid the centre_X, centre_Y. and object confidencce | |
prediction[:, :, 0] = torch.sigmoid(prediction[:, :, 0]) | |
prediction[:, :, 1] = torch.sigmoid(prediction[:, :, 1]) | |
prediction[:, :, 4] = torch.sigmoid(prediction[:, :, 4]) | |
# Add the center offsets | |
grid_len = np.arange(grid_size) | |
a, b = np.meshgrid(grid_len, grid_len) | |
x_offset = torch.FloatTensor(a).view(-1, 1) | |
y_offset = torch.FloatTensor(b).view(-1, 1) | |
if CUDA: | |
x_offset = x_offset.cuda() | |
y_offset = y_offset.cuda() | |
x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1, num_anchors).view(-1, 2).unsqueeze(0) | |
prediction[:, :, :2] += x_y_offset | |
# log space transform height and the width | |
anchors = torch.FloatTensor(anchors) | |
if CUDA: | |
anchors = anchors.cuda() | |
anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0) | |
prediction[:, :, 2:4] = torch.exp(prediction[:, :, 2:4])*anchors | |
# Softmax the class scores | |
prediction[:, :, 5: 5 + num_classes] = torch.sigmoid((prediction[:, :, 5: 5 + num_classes])) | |
prediction[:, :, :4] *= stride | |
return prediction | |
def load_classes(namesfile): | |
fp = open(namesfile, "r") | |
names = fp.read().split("\n")[:-1] | |
return names | |
def get_im_dim(im): | |
im = cv2.imread(im) | |
w, h = im.shape[1], im.shape[0] | |
return w, h | |
def unique(tensor): | |
tensor_np = tensor.cpu().numpy() | |
unique_np = np.unique(tensor_np) | |
unique_tensor = torch.from_numpy(unique_np) | |
tensor_res = tensor.new(unique_tensor.shape) | |
tensor_res.copy_(unique_tensor) | |
return tensor_res | |
# ADD SOFT NMS | |
def write_results(prediction, confidence, num_classes, nms=True, nms_conf=0.4, det_hm=False): | |
""" | |
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-4/ | |
prediction: (B x 10647 x 85) | |
B: the number of images in a batch, | |
10647: the number of bounding boxes predicted per image. (52×52+26×26+13×13)×3=10647 | |
85: the number of bounding box attributes. (c_x, c_y, w, h, object confidence, and 80 class scores) | |
output: Num_obj × [img_index, x_1, y_1, x_2, y_2, object confidence, class_score, label_index] | |
""" | |
conf_mask = (prediction[:, :, 4] > confidence).float().unsqueeze(2) | |
prediction = prediction*conf_mask | |
box_a = prediction.new(prediction.shape) | |
box_a[:, :, 0] = (prediction[:, :, 0] - prediction[:, :, 2]/2) | |
box_a[:, :, 1] = (prediction[:, :, 1] - prediction[:, :, 3]/2) | |
box_a[:, :, 2] = (prediction[:, :, 0] + prediction[:, :, 2]/2) | |
box_a[:, :, 3] = (prediction[:, :, 1] + prediction[:, :, 3]/2) | |
prediction[:, :, :4] = box_a[:, :, :4] | |
batch_size = prediction.size(0) | |
output = prediction.new(1, prediction.size(2) + 1) | |
write = False | |
for ind in range(batch_size): | |
# select the image from the batch | |
image_pred = prediction[ind] | |
# Get the class having maximum score, and the index of that class | |
# Get rid of num_classes softmax scores | |
# Add the class index and the class score of class having maximum score | |
max_conf, max_conf_index = torch.max(image_pred[:, 5:5 + num_classes], 1) | |
max_conf = max_conf.float().unsqueeze(1) | |
max_conf_index = max_conf_index.float().unsqueeze(1) | |
seq = (image_pred[:, :5], max_conf, max_conf_index) | |
image_pred = torch.cat(seq, 1) # image_pred:(10647, 7) 7:[x1, y1, x2, y2, obj_score, max_conf, max_conf_index] | |
# Get rid of the zero entries | |
non_zero_ind = (torch.nonzero(image_pred[:, 4])) | |
image_pred__ = image_pred[non_zero_ind.squeeze(), :].view(-1, 7) | |
# filters out people id | |
if det_hm: | |
cls_mask = (image_pred__[:, -1] == 0).float() | |
class_mask_ind = torch.nonzero(cls_mask).squeeze() | |
image_pred_ = image_pred__[class_mask_ind].view(-1, 7) | |
if torch.sum(cls_mask) == 0: | |
return image_pred_ | |
else: | |
image_pred_ = image_pred__ | |
# Get the various classes detected in the image | |
try: | |
# img_classes = unique(image_pred_[:, -1]) | |
img_classes = torch.unique(image_pred_[:, -1], sorted=True).float() | |
except: | |
continue | |
# We will do NMS classwise | |
# import ipdb;ipdb.set_trace() | |
for cls in img_classes: | |
# get the detections with one particular class | |
cls_mask = image_pred_*(image_pred_[:, -1] == cls).float().unsqueeze(1) | |
class_mask_ind = torch.nonzero(cls_mask[:, -2]).squeeze() | |
image_pred_class = image_pred_[class_mask_ind].view(-1, 7) | |
# sort the detections such that the entry with the maximum objectness | |
# confidence is at the top | |
conf_sort_index = torch.sort(image_pred_class[:, 4], descending=True)[1] | |
image_pred_class = image_pred_class[conf_sort_index] | |
idx = image_pred_class.size(0) | |
# from soft_NMS import soft_nms | |
# boxes = image_pred_class[:,:4] | |
# scores = image_pred_class[:, 4] | |
# k, N = soft_nms(boxes, scores, method=2) | |
# image_pred_class = image_pred_class[k] | |
# if nms has to be done | |
if nms: | |
# For each detection | |
for i in range(idx): | |
# Get the IOUs of all boxes that come after the one we are looking at | |
# in the loop | |
try: | |
ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:]) | |
except ValueError: | |
break | |
except IndexError: | |
break | |
# Zero out all the detections that have IoU > threshold | |
iou_mask = (ious < nms_conf).float().unsqueeze(1) | |
image_pred_class[i+1:] *= iou_mask | |
# Remove the zero entries | |
non_zero_ind = torch.nonzero(image_pred_class[:, 4]).squeeze() | |
image_pred_class = image_pred_class[non_zero_ind].view(-1, 7) | |
# Concatenate the batch_id of the image to the detection | |
# this helps us identify which image does the detection correspond to | |
# We use a linear structure to hold ALL the detections from the batch | |
# the batch_dim is flattened | |
# batch is identified by extra batch column | |
batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind) | |
seq = batch_ind, image_pred_class | |
if not write: | |
output = torch.cat(seq, 1) | |
write = True | |
else: | |
out = torch.cat(seq, 1) | |
output = torch.cat((output, out)) | |
return output | |