Spaces:
Runtime error
Runtime error
import matplotlib | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation, writers | |
from mpl_toolkits.mplot3d import Axes3D | |
import numpy as np | |
import subprocess as sp | |
from tools.color_edge import h36m_color_edge | |
def get_resolution(filename): | |
command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', | |
'-show_entries', 'stream=width,height', '-of', 'csv=p=0', filename] | |
with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: | |
for line in pipe.stdout: | |
w, h = line.decode().strip().split(',') | |
return int(w), int(h) | |
def get_fps(filename): | |
command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', | |
'-show_entries', 'stream=r_frame_rate', '-of', 'csv=p=0', filename] | |
with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: | |
for line in pipe.stdout: | |
a, b = line.decode().strip().split('/') | |
return int(a) / int(b) | |
def read_video(filename, skip=0, limit=-1): | |
w, h = get_resolution(filename) | |
command = ['ffmpeg', | |
'-i', filename, | |
'-f', 'image2pipe', | |
'-pix_fmt', 'rgb24', | |
'-vsync', '0', | |
'-vcodec', 'rawvideo', '-'] | |
i = 0 | |
with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: | |
while True: | |
data = pipe.stdout.read(w * h * 3) | |
if not data: | |
break | |
i += 1 | |
if i > limit and limit != -1: | |
continue | |
if i > skip: | |
yield np.frombuffer(data, dtype='uint8').reshape((h, w, 3)) | |
def downsample_tensor(X, factor): | |
length = X.shape[0] // factor * factor | |
return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1) | |
def render_animation(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, | |
downsample=1, size=5, input_video_path=None, com_reconstrcution=False, input_video_skip=0): | |
""" | |
TODO | |
Render an animation. The supported output modes are: | |
-- 'interactive': display an interactive figure | |
(also works on notebooks if associated with %matplotlib inline) | |
-- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). | |
-- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). | |
-- 'filename.gif': render and export the animation a gif file (requires imagemagick). | |
""" | |
plt.ioff() | |
num_person = keypoints.shape[1] | |
if num_person == 2 and com_reconstrcution: | |
fig = plt.figure(figsize=(size * (1 + len(poses)), size)) | |
ax_in = fig.add_subplot(1, 2, 1) | |
else: | |
fig = plt.figure(figsize=(size * (1 + len(poses)), size)) | |
ax_in = fig.add_subplot(1, 1 + len(poses), 1) | |
ax_in.get_xaxis().set_visible(False) | |
ax_in.get_yaxis().set_visible(False) | |
ax_in.set_axis_off() | |
# ax_in.set_title('Input') | |
ax_3d = [] | |
lines_3d = [] | |
radius = 1.7 | |
if num_person == 2 and com_reconstrcution: | |
ax = fig.add_subplot(1, 2, 2, projection='3d') | |
ax.view_init(elev=15., azim=azim) | |
ax.set_xlim3d([-radius, radius]) | |
ax.set_zlim3d([0, radius]) | |
ax.set_ylim3d([-radius, radius]) | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_zticklabels([]) | |
ax.dist = 7.5 | |
ax_3d.append(ax) | |
lines_3d.append([]) | |
poses = list(poses.values()) | |
else: | |
for index, (title, data) in enumerate(poses.items()): | |
ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') | |
ax.view_init(elev=15., azim=azim) | |
ax.set_xlim3d([-radius / 2, radius / 2]) | |
ax.set_zlim3d([0, radius]) | |
ax.set_ylim3d([-radius / 2, radius / 2]) | |
ax.set_aspect('equal') | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_zticklabels([]) | |
ax.dist = 7.5 | |
# ax.set_title(title) # , pad=35 | |
ax_3d.append(ax) | |
lines_3d.append([]) | |
poses = list(poses.values()) | |
# Decode video | |
if input_video_path is None: | |
# Black background | |
all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') | |
else: | |
# Load video using ffmpeg | |
all_frames = [] | |
for f in read_video(input_video_path, skip=input_video_skip, limit=limit): | |
all_frames.append(f) | |
effective_length = min(keypoints.shape[0], len(all_frames)) | |
all_frames = all_frames[:effective_length] | |
keypoints = keypoints[input_video_skip:] # todo remove | |
for idx in range(len(poses)): | |
poses[idx] = poses[idx][input_video_skip:] | |
if fps is None: | |
fps = get_fps(input_video_path) | |
if downsample > 1: | |
keypoints = downsample_tensor(keypoints, downsample) | |
all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') | |
for idx in range(len(poses)): | |
poses[idx] = downsample_tensor(poses[idx], downsample) | |
fps /= downsample | |
initialized = False | |
image = None | |
lines = [] | |
points = None | |
if limit < 1: | |
limit = len(all_frames) | |
else: | |
limit = min(limit, len(all_frames)) | |
parents = skeleton.parents() | |
index = [i for i in np.arange(17)] | |
def update_video(i): | |
nonlocal initialized, image, lines, points | |
joints_right_2d = keypoints_metadata['keypoints_symmetry'][1] | |
if num_person == 2: | |
joints_right_2d_two = [] | |
joints_right_2d_two += joints_right_2d | |
joints_right_2d_second = [i + 17 for i in joints_right_2d] | |
joints_right_2d_two += joints_right_2d_second | |
colors_2d = np.full(34, 'black') | |
colors_2d[joints_right_2d_two] = 'red' | |
else: | |
colors_2d = np.full(17, 'black') | |
colors_2d[joints_right_2d] = 'red' | |
if not initialized: | |
image = ax_in.imshow(all_frames[i], aspect='equal') | |
for j, j_parent in zip(index, parents): | |
if j_parent == -1: | |
continue | |
if len(parents) == 17 and keypoints_metadata['layout_name'] != 'coco': | |
for m in range(num_person): | |
# Draw skeleton only if keypoints match (otherwise we don't have the parents definition) | |
lines.append(ax_in.plot([keypoints[i, m, j, 0], keypoints[i, m, j_parent, 0]], | |
[keypoints[i, m, j, 1], keypoints[i, m, j_parent, 1]], | |
color='pink')) | |
# Apply different colors for each joint | |
col = h36m_color_edge(j) | |
if com_reconstrcution: | |
for pose in poses: | |
pos = pose[i] | |
lines_3d[0].append(ax_3d[0].plot([pos[j, 0], pos[j_parent, 0]], | |
[pos[j, 1], pos[j_parent, 1]], | |
[pos[j, 2], pos[j_parent, 2]], zdir='z', c=col, linewidth=3)) | |
else: | |
for n, ax in enumerate(ax_3d): | |
pos = poses[n][i] | |
lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], | |
[pos[j, 1], pos[j_parent, 1]], | |
[pos[j, 2], pos[j_parent, 2]], zdir='z', c=col, linewidth=3)) | |
points = ax_in.scatter(*keypoints[i].reshape(17*num_person, 2).T, 10, color=colors_2d, edgecolors='white', zorder=10) | |
initialized = True | |
else: | |
image.set_data(all_frames[i]) | |
for j, j_parent in zip(index, parents): | |
if j_parent == -1: | |
continue | |
if len(parents) == 17 and keypoints_metadata['layout_name'] != 'coco': | |
for m in range(num_person): | |
lines[j + 16*m - 1][0].set_data([keypoints[i, m, j, 0], keypoints[i, m, j_parent, 0]], | |
[keypoints[i, m, j, 1], keypoints[i, m, j_parent, 1]]) | |
if com_reconstrcution: | |
for k, pose in enumerate(poses): | |
pos = pose[i] | |
lines_3d[0][j + k*16 - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]]) | |
lines_3d[0][j + k*16 - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) | |
lines_3d[0][j + k*16 - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') | |
else: | |
for n, ax in enumerate(ax_3d): | |
pos = poses[n][i] | |
lines_3d[n][j - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]]) | |
lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) | |
lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') | |
points.set_offsets(keypoints[i].reshape(17*num_person, 2)) | |
print('{}/{} '.format(i, limit), end='\r') | |
fig.tight_layout() | |
anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False) | |
if output.endswith('.mp4'): | |
Writer = writers['ffmpeg'] | |
writer = Writer(fps=fps, metadata={}, bitrate=bitrate) | |
anim.save(output, writer=writer) | |
elif output.endswith('.gif'): | |
anim.save(output, dpi=80, writer='imagemagick') | |
else: | |
raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') | |
plt.close() | |