demo / app.py
amazinghaha's picture
Update app.py
d9a1752
raw
history blame
7.76 kB
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
from resnet_gn import resnet50
import pickle
def load_from_pkl(load_path):
data_input = open(load_path, 'rb')
read_data = pickle.load(data_input)
data_input.close()
return read_data
Image_3D = None
Current_name = None
ALL_message = load_from_pkl(r'./label0601.pkl')
Model_Paht = r'./model_epoch62.pth.tar'
checkpoint = torch.load(Model_Paht,map_location='cpu')
classnet = resnet50(
num_classes=1,
sample_size=128,
sample_duration=8)
classnet.load_state_dict(checkpoint['model_dict'])
def resize3D(img, aimsize, order = 3):
"""
:param img: 3D array
:param aimsize: list, one or three elements, like [256], or [256,56,56]
:return:
"""
_shape =img.shape
if len(aimsize)==1:
aimsize = [aimsize[0] for _ in range(3)]
if aimsize[0] is None:
return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]),order=order) # resample for cube_size
if aimsize[1] is None:
return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]),order=order) # resample for cube_size
if aimsize[2] is None:
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1),order=order) # resample for cube_size
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order) # resample for cube_size
def inference():
model = classnet
data = Image_3D
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
all_loss = 0
length = 0
try:
with torch.no_grad():
data = torch.from_numpy(data)
image = torch.unsqueeze(data, 0)
patch_data = torch.unsqueeze(image, 0).to(device).float() # (N, C_{in}, D_{in}, H_{in}, W_{in})
# Pre : Prediction Result
pre_probs = model(patch_data)
# pre_probs = F.sigmoid(pre_probs)#todo
pre_flat = pre_probs.view(-1)
np.round(pre_flat.numpy()[0], decimals=2)
#(1-pre_flat.numpy()[0]).astype(np.float32)
#pre_flat.numpy()[0].astype(np.float32)
p = float(np.round(pre_flat.numpy()[0], decimals=2))
n = float(np.round(1-p, decimals=2))
return {'急性期': n, '亚急性期': p}
except:
return {'': ''}
import gradio as gr
import numpy as np
import nibabel as nib
import os
import tempfile
def get_Image_reslice(input_file):
'''得到图像 返回随即层'''
global Image_3D
global Current_name
if isinstance(input_file, str):
input_file=input_file
else:
input_file=input_file.name
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
Current_name = input_file.split(os.sep)[-1].split('.')[0].rsplit('_',1)[0]
Image_3D = (np.max(Image_3D)-Image_3D)/(np.max(Image_3D)-np.min(Image_3D))
random_z = np.random.randint(0, Image_3D.shape[0])
image_slice_z = Image_3D[random_z,:,:]
random_y = np.random.randint(0, Image_3D.shape[1])
image_slice_y = Image_3D[:, random_y, :]
random_x = np.random.randint(0, Image_3D.shape[2])
image_slice_x = Image_3D[:, :, random_x]
print(random_x)
# return zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
# zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
# zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
return image_slice_z, \
image_slice_y, \
image_slice_x, random_z,random_y,random_x
def change_image_slice_x(slice):
image_slice = Image_3D[:, :, slice-1]
return image_slice
def change_image_slice_y(slice):
image_slice = Image_3D[:, slice-1, :]
return image_slice
def change_image_slice_z(slice):
image_slice = Image_3D[slice-1,:,:]
return image_slice
def get_medical_message():
global Current_name
if Current_name==None:
return '请先加载数据',' '
else:
past = ALL_message[Current_name]['past']
now = ALL_message[Current_name]['now']
return past, now
def clear_all():
global Image_3D
global Current_name
Current_name = None
Image_3D = None
return np.ones((10,10)),np.ones((10,10)),np.ones((10,10)),'','',{'': ''}
class App:
def __init__(self):
self.demo = None
self.main()
def main(self):
# get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
# prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
# append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
# inputs="textbox", outputs=gr.Textbox(label="Greeting"))
#iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])
with gr.Blocks() as demo:
inp = gr.inputs.File(label="Upload NIfTI file")
with gr.Row():
btn1 = gr.Button("Upload Data")
clear = gr.Button("Clear")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
out1 = gr.Image(shape=(10, 10))
slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out2 = gr.Image(shape=(10, 10))
slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out3 = gr.Image(shape=(10, 10))
slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)
with gr.Tab("Medical Information"):
with gr.Row():
with gr.Column(scale=1):
btn2 = gr.Button(label="临床信息")
out4 = gr.Textbox(label="患病史")
out6 = gr.Textbox(label="现病史")
with gr.Column(scale=1):
btn3 = gr.Button("分期结果")
out5 = gr.Label(num_top_classes=2,label='分期结果')
btn3.click(inference, inputs=None, outputs=out5)
btn2.click(get_medical_message, inputs=None, outputs=[out4,out6])
#demo = gr.Series(get_name, prepend_hello, append_nice)
btn1.click(get_Image_reslice, inp, [out1, out2, out3, slider1, slider2, slider3])
slider3.change(change_image_slice_x, inputs=slider3, outputs=out3)
slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)
clear.click(clear_all, None, [out1, out2, out3, out4, out6, out5], queue=True)
gr.Markdown("Examples")
gr.Examples(
#examples=r'F:\WorkSpacing\XS_data\FenQi\chuli_data\ALL\358small_exp4_cut_128_256_128\1093978_A_L_MRI.nii.gz',
examples=[[os.path.join(os.path.dirname(__file__), "4171551_B_L_MRI.nii.gz")],
[os.path.join(os.path.dirname(__file__), "4153597_B_L_MRI.nii.gz")]],
inputs = inp,
outputs = [out1, out2, out3,slider1,slider2,slider3],
fn=get_Image_reslice,
cache_examples=True,
)
demo.launch()
app = App()