Spaces:
Sleeping
Sleeping
import gradio as gr | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
from pathlib import Path | |
import spacy | |
import re | |
# Load spaCy model | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
print("Downloading spaCy model...") | |
import subprocess | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Define categories and their colors with better contrast | |
CATEGORIES = { | |
"Main Theme": "#4287f5", # Bright blue | |
"Event": "#42f54b", # Bright green | |
"Person": "#f542aa", # Pink | |
"Law": "#f5d442", # Yellow | |
"Concept": "#f54242" # Red | |
} | |
# Sample historical data for Unit 5 (1844-1877) | |
HISTORICAL_DATA = { | |
"civil war": { | |
"category": "Main Theme", | |
"related": [ | |
("Abraham Lincoln", "Person"), | |
("Emancipation Proclamation", "Law"), | |
("Confederate States", "Concept"), | |
("Union Army", "Concept"), | |
("Battle of Gettysburg", "Event"), | |
("Slavery", "Main Theme"), | |
("Robert E. Lee", "Person"), | |
("Ulysses S. Grant", "Person") | |
] | |
}, | |
"reconstruction": { | |
"category": "Main Theme", | |
"related": [ | |
("13th Amendment", "Law"), | |
("14th Amendment", "Law"), | |
("15th Amendment", "Law"), | |
("Freedmen's Bureau", "Concept"), | |
("Andrew Johnson", "Person"), | |
("Black Codes", "Law"), | |
("Radical Republicans", "Concept"), | |
("Carpetbaggers", "Concept") | |
] | |
}, | |
"manifest destiny": { | |
"category": "Main Theme", | |
"related": [ | |
("Mexican-American War", "Event"), | |
("Oregon Territory", "Concept"), | |
("California Gold Rush", "Event"), | |
("James K. Polk", "Person"), | |
("Treaty of Guadalupe Hidalgo", "Law"), | |
("Westward Expansion", "Concept"), | |
("Native American Displacement", "Event"), | |
("Mexican Cession", "Event") | |
] | |
} | |
} | |
def categorize_term(term): | |
"""Categorize a term based on predefined data and NER.""" | |
term_lower = term.lower() | |
# Check predefined categories first | |
if term_lower in HISTORICAL_DATA: | |
return HISTORICAL_DATA[term_lower]["category"] | |
# Use spaCy for NER | |
doc = nlp(term) | |
for ent in doc.ents: | |
if ent.label_ == "PERSON": | |
return "Person" | |
elif ent.label_ == "EVENT" or ent.label_ == "DATE": | |
return "Event" | |
elif ent.label_ == "LAW" or ent.label_ == "ORG": | |
return "Law" | |
# Default to Concept if no other category is found | |
return "Concept" | |
def get_related_terms(term): | |
"""Get related terms for a given historical term.""" | |
term_lower = term.lower() | |
if term_lower in HISTORICAL_DATA: | |
return HISTORICAL_DATA[term_lower]["related"] | |
# If term not in predefined data, return some general connections | |
# based on the time period | |
general_connections = [ | |
("Civil War", "Main Theme"), | |
("Reconstruction", "Main Theme"), | |
("Abraham Lincoln", "Person"), | |
("Slavery", "Concept"), | |
("United States", "Concept") | |
] | |
return general_connections[:5] # Limit to 5 connections | |
def generate_context_map(term): | |
"""Generate a network visualization for the given term.""" | |
if not term or not term.strip(): | |
return None | |
# Create graph | |
G = nx.Graph() | |
# Add main term | |
main_term = term.strip() | |
term_category = categorize_term(main_term) | |
G.add_node(main_term, category=term_category) | |
# Add related terms | |
related_terms = get_related_terms(main_term) | |
for related_term, category in related_terms: | |
if related_term.lower() != main_term.lower(): | |
G.add_node(related_term, category=category) | |
G.add_edge(main_term, related_term) | |
# Create visualization | |
plt.figure(figsize=(12, 12)) | |
plt.clf() | |
# Set light background for better contrast | |
plt.gca().set_facecolor('#ffffff') | |
plt.gcf().set_facecolor('#ffffff') | |
# Create layout | |
pos = nx.spring_layout(G, k=1.5, iterations=50) | |
# Draw nodes for each category | |
for category, color in CATEGORIES.items(): | |
node_list = [node for node, attr in G.nodes(data=True) | |
if attr.get('category') == category] | |
if node_list: | |
nx.draw_networkx_nodes(G, pos, | |
nodelist=node_list, | |
node_color=color, | |
node_size=3000, | |
alpha=0.7) | |
# Draw edges | |
nx.draw_networkx_edges(G, pos, edge_color='gray', width=2, alpha=0.6) | |
# Add labels with better formatting | |
labels = nx.draw_networkx_labels(G, pos, | |
font_size=10, | |
font_weight='bold', | |
font_color='black') | |
# Add title and legend | |
plt.title(f"Historical Context Map for '{main_term}'", | |
fontsize=16, | |
pad=20) | |
# Add category legend | |
legend_elements = [plt.Line2D([0], [0], marker='o', color='w', | |
markerfacecolor=color, markersize=10, | |
label=category) | |
for category, color in CATEGORIES.items()] | |
plt.legend(handles=legend_elements, loc='upper left', | |
bbox_to_anchor=(1, 1)) | |
plt.tight_layout() | |
return plt.gcf() | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_context_map, | |
inputs=gr.Textbox( | |
label="Enter a historical term from Unit 5 (1844-1877)", | |
placeholder="e.g., Civil War, Abraham Lincoln, Reconstruction" | |
), | |
outputs=gr.Plot(), | |
title="Historical Context Mapper", | |
description="""Enter a term from Unit 5 (1844-1877) to see its historical context and connections. | |
The visualization will show how the term relates to key events, people, laws, and concepts from this period.""", | |
examples=[ | |
["Civil War"], | |
["Reconstruction"], | |
["Manifest Destiny"], | |
["Abraham Lincoln"], | |
["Emancipation Proclamation"] | |
], | |
theme="default" | |
) | |
if __name__ == "__main__": | |
iface.launch() |