Spaces:
Sleeping
Sleeping
File size: 1,004 Bytes
c46c672 07952a9 22a9bc1 07952a9 c46c672 3edf187 07952a9 3edf187 22a9bc1 e36a241 60c94e7 3edf187 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch
from PIL import Image
# Load the model and feature extractor once during initialization
model_name = "amjadfqs/finalProject"
model = AutoModelForImageClassification.from_pretrained(model_name)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
def predict(image):
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get the predicted class
predicted_class = logits.argmax(-1).item()
# You may need to adjust the following line based on your class labels
class_names = ["class1", "class2", "class3", "class4"]
return predicted_class
# Set up the Gradio interface
image_cp = gr.Image(type="pil", label='Brain')
interface = gr.Interface(fn=predict, inputs=image_cp, outputs="text")
interface.launch()
|