Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor | |
import torch | |
from PIL import Image | |
# Load the model and feature extractor once during initialization | |
model_name = "amjadfqs/finalProject" | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
def predict(image): | |
# Preprocess the image | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
# Make prediction | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Get the predicted class | |
predicted_class = logits.argmax(-1).item() | |
# You may need to adjust the following line based on your class labels | |
class_names = ["class1", "class2", "class3", "class4"] | |
return predicted_class | |
# Set up the Gradio interface | |
image_cp = gr.Image(type="pil", label='Brain') | |
interface = gr.Interface(fn=predict, inputs=image_cp, outputs="text") | |
interface.launch() | |