finalProject2 / app.py
amjadfqs's picture
Update app.py
07952a9 verified
raw
history blame
1 kB
import gradio as gr
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch
from PIL import Image
# Load the model and feature extractor once during initialization
model_name = "amjadfqs/finalProject"
model = AutoModelForImageClassification.from_pretrained(model_name)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
def predict(image):
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get the predicted class
predicted_class = logits.argmax(-1).item()
# You may need to adjust the following line based on your class labels
class_names = ["class1", "class2", "class3", "class4"]
return predicted_class
# Set up the Gradio interface
image_cp = gr.Image(type="pil", label='Brain')
interface = gr.Interface(fn=predict, inputs=image_cp, outputs="text")
interface.launch()