Spaces:
Sleeping
Sleeping
File size: 1,358 Bytes
9ee3f6b 71ce63b 9ee3f6b ab34178 9ee3f6b 90cd621 9190d00 90cd621 9190d00 90cd621 9190d00 71ce63b 9ee3f6b ab34178 71ce63b 9ee3f6b 71ce63b 9ee3f6b 9dea61e ab34178 9ee3f6b 71ce63b ebc22e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import os
import gradio as gr
from groq import Groq
# Set up Groq API client (ensure GROQ_API_KEY is set in your environment or as a Hugging Face secret for deployment)
apikey = os.getenv("apikey")
print(f"API Key: {apikey}") # Debugging line, remove it before pushing to Hugging Face
client = Groq(api_key=apikey)
# Function to interact with the LLM using Groq's API
def chatbot(messages):
try:
# Ensure the messages list is not empty
if not messages:
messages = [("System", "Hello! How can I assist you today?")]
user_input = messages[-1][0] # Last user input message
if not user_input.strip(): # Check for empty input
messages.append(("System", "It seems like you may have accidentally sent an empty message. Please rephrase."))
return messages
# Sending request to Groq API
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": user_input}],
model="llama3-8b-8192", # Replace with the correct model name
)
response = chat_completion.choices[0].message.content
messages.append((user_input, response)) # Append user input and bot response as a tuple
return messages
except Exception as e:
# Capture the specific error message for debugging
print
|