Spaces:
Paused
Paused
File size: 2,663 Bytes
4f91ffe 683afc3 88d1237 3aadc38 0737dc8 68e88ea 3aadc38 4fbc46c c1497a6 3aadc38 68e88ea 3aadc38 68e88ea 3aadc38 68e88ea 3aadc38 68e88ea 3aadc38 68e88ea 3aadc38 68e88ea 91a655a 68e88ea 3aadc38 68e88ea 3aadc38 68e88ea a4cc7b2 68e88ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import os
import requests
url = "https://huggingface.co/InstantX/SD3.5-Large-IP-Adapter/resolve/main/ip-adapter.bin"
file_path = "ip-adapter.bin"
# Check if the file already exists
if not os.path.exists(file_path):
print("File not found, downloading...")
response = requests.get(url, stream=True)
with open(file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
file.write(chunk)
print("Download completed!")
else:
print("File already exists.")
from models.transformer_sd3 import SD3Transformer2DModel
import gradio as gr
import torch
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
import os
import spaces
from huggingface_hub import login
token = os.getenv("HF_TOKEN")
login(token=token)
# Model and Pipeline Setup
model_path = 'stabilityai/stable-diffusion-3.5-large'
ip_adapter_path = './ip-adapter.bin'
image_encoder_path = "google/siglip-so400m-patch14-384"
# Load transformer and pipeline
transformer = SD3Transformer2DModel.from_pretrained(
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = StableDiffusion3Pipeline.from_pretrained(
model_path, transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")
# Initialize IP Adapter
pipe.init_ipadapter(
ip_adapter_path=ip_adapter_path,
image_encoder_path=image_encoder_path,
nb_token=64,
)
@spaces.GPU
def gui_generation(text, num_imgs, width, height):
"""
Generate images using Stable Diffusion 3.5
"""
images = pipe(
prompt=text,
width=width,
height=height,
num_images_per_prompt=num_imgs,
negative_prompt="lowres, low quality, worst quality",
num_inference_steps=24,
guidance_scale=5.0,
generator=torch.Generator("cuda").manual_seed(42),
).images
return images
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Stable Diffusion 3.5 Image Generation")
with gr.Row():
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your image generation prompt")
number_slider = gr.Slider(1, 30, value=2, step=1, label="Batch size")
with gr.Row():
width_slider = gr.Slider(256, 1536, value=1024, step=64, label="Width")
height_slider = gr.Slider(256, 1536, value=1024, step=64, label="Height")
gallery = gr.Gallery(columns=[3], rows=[1], object_fit="contain", height="auto")
generate_btn = gr.Button("Generate")
generate_btn.click(
fn=gui_generation,
inputs=[prompt_box, number_slider, width_slider, height_slider],
outputs=gallery
)
demo.launch()
|