amos1088 commited on
Commit
dbeec98
·
1 Parent(s): 43107ac

test gradio

Browse files
Files changed (1) hide show
  1. app.py +9 -11
app.py CHANGED
@@ -16,22 +16,19 @@ login(token=token)
16
 
17
 
18
  pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda")
 
19
 
20
 
21
 
22
  @spaces.GPU
23
- def generate_image(prompt, reference_images, controlnet_conditioning_scale):
24
- pipeline.load_ip_adapter(["h94/IP-Adapter"]*len(reference_images), subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
25
- style_images = [Image.open(reference_image) for reference_image in reference_images]
26
- # reference_image.resize((512, 512))
27
- scale = {
28
- "up": {"block_0": [0.0, controlnet_conditioning_scale/len(reference_images), 0.0]},
29
- }
30
- pipeline.set_ip_adapter_scale([scale]*len(reference_images))
31
 
32
  image = pipeline(
33
  prompt=prompt,
34
- ip_adapter_image=style_images,
35
  negative_prompt="",
36
  guidance_scale=5,
37
  num_inference_steps=30,
@@ -44,8 +41,9 @@ interface = gr.Interface(
44
  fn=generate_image,
45
  inputs=[
46
  gr.Textbox(label="Prompt"),
47
- gr.inputs.File(file_count="multiple"),
48
- gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6),
 
49
  ],
50
  outputs="image",
51
  title="Image Generation with Stable Diffusion 3 medium and ControlNet",
 
16
 
17
 
18
  pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda")
19
+ pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors")
20
 
21
 
22
 
23
  @spaces.GPU
24
+ def generate_image(prompt, reference_image, controlnet_conditioning_scale):
25
+ style_images = [load_image(f.name) for f in reference_image]
26
+
27
+ pipeline.set_ip_adapter_scale(controlnet_conditioning_scale)
 
 
 
 
28
 
29
  image = pipeline(
30
  prompt=prompt,
31
+ ip_adapter_image=[style_images],
32
  negative_prompt="",
33
  guidance_scale=5,
34
  num_inference_steps=30,
 
41
  fn=generate_image,
42
  inputs=[
43
  gr.Textbox(label="Prompt"),
44
+ # gr.Image( type= "filepath",label="Reference Image (Style)"),
45
+ gr.inputs.File(file_count="multiple",label="Reference Image (Style)"),
46
+ gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
47
  ],
48
  outputs="image",
49
  title="Image Generation with Stable Diffusion 3 medium and ControlNet",