File size: 8,557 Bytes
2e1a3f8 e8c51f1 2e1a3f8 e8c51f1 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9c33733 2e1a3f8 9c33733 9e7d7f8 0ce76e1 2e1a3f8 5b3ff3f 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 4b1b415 2e1a3f8 9e7d7f8 4b1b415 ef158cd 9e7d7f8 4b1b415 2e1a3f8 9e7d7f8 2e1a3f8 4b1b415 9e7d7f8 4b1b415 9e7d7f8 4b1b415 9e7d7f8 4b1b415 9e7d7f8 a9179d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import sys
import gradio
sys.path.append("BERT_explainability")
import torch
from BERT_explainability.ExplanationGenerator import Generator
from BERT_explainability.roberta2 import RobertaForSequenceClassification
from transformers import AutoTokenizer
from captum.attr import visualization
import torch
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
class PyTMinMaxScalerVectorized(object):
"""
Transforms each channel to the range [0, 1].
"""
def __init__(self, dimension=-1):
self.d = dimension
def __call__(self, tensor):
d = self.d
scale = 1.0 / (
tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]
)
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
return tensor
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = RobertaForSequenceClassification.from_pretrained(
"textattack/roberta-base-SST-2"
).to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
# initialize the explanations generator
explanations = Generator(model, "roberta")
classifications = ["NEGATIVE", "POSITIVE"]
# rule 5 from paper
def avg_heads(cam, grad):
cam = (grad * cam).clamp(min=0).mean(dim=-3)
# set negative values to 0, then average
# cam = cam.clamp(min=0).mean(dim=0)
return cam
# rule 6 from paper
def apply_self_attention_rules(R_ss, cam_ss):
R_ss_addition = torch.matmul(cam_ss, R_ss)
return R_ss_addition
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
if index == None:
# index = np.expand_dims(np.arange(input_ids.shape[1])
# by default explain the class with the highest score
index = output.argmax(axis=-1).detach().cpu().numpy()
# create a one-hot vector selecting class we want explanations for
one_hot = (
torch.nn.functional.one_hot(
torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
)
.to(torch.float)
.requires_grad_(True)
).to(device)
print("ONE_HOT", one_hot.size(), one_hot)
one_hot = torch.sum(one_hot * output)
model.zero_grad()
# create the gradients for the class we're interested in
one_hot.backward(retain_graph=True)
num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
print(input_ids.size(-1), num_tokens)
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
for i, blk in enumerate(model.roberta.encoder.layer):
if i < start_layer:
continue
grad = blk.attention.self.get_attn_gradients()
cam = blk.attention.self.get_attn()
cam = avg_heads(cam, grad)
joint = apply_self_attention_rules(R, cam)
R += joint
return output, R[:, 0, 1:-1]
def visualize_text(datarecords, legend=True):
dom = ["<table width: 100%>"]
rows = [
"<tr><th>True Label</th>"
"<th>Predicted Label</th>"
"<th>Attribution Label</th>"
"<th>Attribution Score</th>"
"<th>Word Importance</th>"
]
for datarecord in datarecords:
rows.append(
"".join(
[
"<tr>",
visualization.format_classname(datarecord.true_class),
visualization.format_classname(
"{0} ({1:.2f})".format(
datarecord.pred_class, datarecord.pred_prob
)
),
visualization.format_classname(datarecord.attr_class),
visualization.format_classname(
"{0:.2f}".format(datarecord.attr_score)
),
visualization.format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
),
"<tr>",
]
)
)
if legend:
dom.append(
'<div style="border-top: 1px solid; margin-top: 5px; \
padding-top: 5px; display: inline-block">'
)
dom.append("<b>Legend: </b>")
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
dom.append(
'<span style="display: inline-block; width: 10px; height: 10px; \
border: 1px solid; background-color: \
{value}"></span> {label} '.format(
value=visualization._get_color(value), label=label
)
)
dom.append("</div>")
dom.append("".join(rows))
dom.append("</table>")
html = "".join(dom)
return html
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0):
# generate an explanation for the input
output, expl = generate_relevance(
model, input_ids, attention_mask, index=index, start_layer=start_layer
)
#print(output.shape, expl.shape)
# normalize scores
scaler = PyTMinMaxScalerVectorized()
norm = scaler(expl)
# get the model classification
output = torch.nn.functional.softmax(output, dim=-1)
vis_data_records = []
for record in range(input_ids.size(0)):
classification = output[record].argmax(dim=-1).item()
class_name = classifications[classification]
nrm = norm[record]
# if the classification is negative, higher explanation scores are more negative
# flip for visualization
if class_name == "NEGATIVE":
nrm *= -1
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
]
vis_data_records.append(list(zip(tokens, nrm.tolist())))
#print([(tokens[i], nrm[i].item()) for i in range(len(tokens))])
# vis_data_records.append(
# visualization.VisualizationDataRecord(
# nrm,
# output[record][classification],
# classification,
# classification,
# index,
# 1,
# tokens,
# 1,
# )
# )
# return visualize_text(vis_data_records)
return vis_data_records
def sentence_sentiment(input_text):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
index = output.argmax(axis=-1).item()
return classifications[index]
def sentiment_explanation_hila(input_text):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
# true class is positive - 1
true_class = 1
return show_explanation(model, input_ids, attention_mask)
hila = gradio.Interface(
fn=sentence_sentiment,
inputs="text",
outputs="label",
title="RoBERTa Explanability",
description="Quick demo of a version of [Hila Chefer's](https://github.com/hila-chefer) [Transformer-Explanability](https://github.com/hila-chefer/Transformer-Explainability/) but without the layerwise relevance propagation (as in [Transformer-MM_explainability](https://github.com/hila-chefer/Transformer-MM-Explainability/)) for a RoBERTa model.",
examples=[
[
"This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great"
],
[
"I really didn't like this movie. Some of the actors were good, but overall the movie was boring"
],
],
interpretation=sentiment_explanation_hila
)
shap = gradio.Interface(
fn=sentence_sentiment,
inputs="text",
outputs="label",
title="RoBERTa Explanability",
description="gradio shap explanations",
examples=[
[
"This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great"
],
[
"I really didn't like this movie. Some of the actors were good, but overall the movie was boring"
],
],
interpretation="shap"
iface = gradio.Parallel(hila, shap)
iface.launch()
|