Spaces:
Running
Running
File size: 10,289 Bytes
f26658a 24f27aa f26658a 24f27aa f26658a 24f27aa f26658a 24f27aa f26658a 24f27aa f26658a ebc577a f26658a 82aa0d3 eefe007 b44a561 5b1b708 ba7eaa4 2027e35 eefe007 b44a561 ba7eaa4 2027e35 b44a561 2027e35 5b1b708 eefe007 5b1b708 24f27aa aae052c b8262b4 24f27aa b8262b4 aae052c ebc577a f26658a 24f27aa ebc577a f26658a 6b77869 f26658a ebc577a a2dc111 ebc577a a2dc111 b44a561 ebc577a b44a561 ebc577a a2dc111 ebc577a f26658a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import streamlit as st
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModel
from huggingface_hub import login
import re
import copy
from modeling_st2 import ST2ModelV2, SignalDetector
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
login(token=hf_token)
@st.cache_resource
def load_model():
config = AutoConfig.from_pretrained("roberta-large")
tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
class Args:
def __init__(self):
self.dropout = 0.1
self.signal_classification = True
self.pretrained_signal_detector = False
args = Args()
model = ST2ModelV2(args)
repo_id = "anamargarida/SpanExtractionWithSignalCls_2"
filename = "model.safetensors"
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
state_dict = load_file(model_path)
model.load_state_dict(state_dict)
return tokenizer, model
tokenizer, model = load_model()
model.eval()
def extract_arguments(text, tokenizer, model, beam_search=True):
class Args:
def __init__(self):
self.signal_classification = True
self.pretrained_signal_detector = False
args = Args()
inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
word_ids = inputs.word_ids()
with torch.no_grad():
outputs = model(**inputs)
start_cause_logits = outputs["start_arg0_logits"][0]
end_cause_logits = outputs["end_arg0_logits"][0]
start_effect_logits = outputs["start_arg1_logits"][0]
end_effect_logits = outputs["end_arg1_logits"][0]
start_signal_logits = outputs["start_sig_logits"][0]
end_signal_logits = outputs["end_sig_logits"][0]
# Set the first and last token logits to a very low value to ignore them
start_cause_logits[0] = -1e-4
end_cause_logits[0] = -1e-4
start_effect_logits[0] = -1e-4
end_effect_logits[0] = -1e-4
start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
# Beam Search for position selection
if beam_search:
indices1, indices2, score1, score2, topk_scores = model.beam_search_position_selector(
start_cause_logits=start_cause_logits,
end_cause_logits=end_cause_logits,
start_effect_logits=start_effect_logits,
end_effect_logits=end_effect_logits,
topk=5
)
start_cause1, end_cause1, start_effect1, end_effect1 = indices1
start_cause2, end_cause2, start_effect2, end_effect2 = indices2
else:
start_cause1 = start_cause_logits.argmax().item()
end_cause1 = end_cause_logits.argmax().item()
start_effect1 = start_effect_logits.argmax().item()
end_effect1 = end_effect_logits.argmax().item()
start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None
has_signal = 1
if args.signal_classification:
if not args.pretrained_signal_detector:
has_signal = outputs["signal_classification_logits"].argmax().item()
else:
has_signal = signal_detector.predict(text=batch["text"])
if has_signal:
start_signal_logits[0] = -1e-4
end_signal_logits[0] = -1e-4
start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
start_signal = start_signal_logits.argmax().item()
end_signal_logits[:start_signal] = -1e4
end_signal_logits[start_signal + 5:] = -1e4
end_signal = end_signal_logits.argmax().item()
if not has_signal:
start_signal, end_signal = None, None
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
token_ids = inputs["input_ids"][0]
offset_mapping = inputs["offset_mapping"][0].tolist()
def mark_text_by_position(original_text, start_token, end_token, color):
"""Marks text in the original string based on character positions."""
# Inserts tags into the original text based on token offsets.
if start_token is not None and end_token is not None:
#st.write(f"Start: {start_token}, End: {end_token}")
if start_token > end_token:
return None
if start_token <= end_token:
start_idx, end_idx = offset_mapping[start_token][0], offset_mapping[end_token][1]
if start_idx is not None and end_idx is not None and start_idx < end_idx:
#st.write(f"Start_idx: {start_idx}, End_idx: {end_idx}")
return (
original_text[:start_idx]
+ f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
+ original_text[start_idx:end_idx]
+ "</mark>"
+ original_text[end_idx:]
)
return original_text
cause_text1 = mark_text_by_position(input_text, start_cause1, end_cause1, "#FFD700") # yellow for cause
effect_text1 = mark_text_by_position(input_text, start_effect1, end_effect1, "#90EE90") # green for effect
if start_signal is not None and end_signal is not None:
signal_text = mark_text_by_position(input_text, start_signal, end_signal, "#FF6347") # red for signal
else:
signal_text = None
if beam_search:
cause_text2 = mark_text_by_position(input_text, start_cause2, end_cause2, "#FFD700")
effect_text2 = mark_text_by_position(input_text, start_effect2, end_effect2, "#90EE90")
else:
cause_text2 = None
effect_text2 = None
if beam_search:
start_cause_probs = torch.softmax(start_cause_logits, dim=-1)
end_cause_probs = torch.softmax(end_cause_logits, dim=-1)
start_effect_probs = torch.softmax(start_effect_logits, dim=-1)
end_effect_probs = torch.softmax(end_effect_logits, dim=-1)
best_start_cause_score = start_cause_probs[start_cause1].item()
best_end_cause_score = end_cause_probs[end_cause1].item()
best_start_effect_score = start_effect_probs[start_effect1].item()
best_end_effect_score = end_effect_probs[end_effect1].item()
second_start_cause_score = start_cause_probs[start_cause2].item()
second_end_cause_score = end_cause_probs[end_cause2].item()
second_start_effect_score = start_effect_probs[start_effect2].item()
second_end_effect_score = end_effect_probs[end_effect2].item()
best_scores = {
"Start Cause Score": round(best_start_cause_score, 4),
"End Cause Score": round(best_end_cause_score, 4),
"Start Effect Score": round(best_start_effect_score, 4),
"End Effect Score": round(best_end_effect_score, 4),
"Total Best Score [sum of log-probability scores]": round(score1, 4)
}
second_best_scores = {
"Start Cause Score": round(second_start_cause_score, 4),
"End Cause Score": round(second_end_cause_score, 4),
"Start Effect Score": round(second_start_effect_score, 4),
"End Effect Score": round(second_end_effect_score, 4),
"Total Second Best Score [sum of log-probability scores]": round(score2, 4)
}
top5_scores = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:5]
top5_scores = [(k, round(v, 4)) for k, v in top5_scores]
else:
best_scores = {}
second_best_scores = {}
top5_scores = {}
return cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores
st.title("Causal Relation Extraction")
input_text = st.text_area("Enter your text here:", height=100)
beam_search = st.radio("Enable Position Selector & Beam Search?", ('Yes', 'No')) == 'Yes'
if st.button("Extract"):
if input_text:
cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
# Display first relation
st.write("## Relation 1:")
if cause_text1 is None or effect_text1 is None:
st.write("The prediction is not correct for at least one span: The position of the predicted end token comes before the position of the start token.")
else:
st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
if beam_search:
# Display dictionary in Streamlit
st.markdown(f"<strong>Best Tuple Scores:</strong>", unsafe_allow_html=True)
st.json(best_scores)
# Display second relation if beam search is enabled
st.write("## Relation 2:")
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
st.markdown(f"<strong>Second best Tuple Scores:</strong>", unsafe_allow_html=True)
st.json(second_best_scores)
st.markdown(f"<strong>top5_scores [sum of log-probability scores]:</strong>", unsafe_allow_html=True)
# Unpack top 5 scores
# first, second, third, fourth, fifth = top_5_scores
st.json(top5_scores)
else:
st.warning("Please enter some text before extracting.") |