File size: 10,289 Bytes
f26658a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f27aa
f26658a
 
 
 
 
 
 
 
24f27aa
f26658a
 
24f27aa
f26658a
 
 
 
 
 
 
 
 
 
24f27aa
f26658a
 
 
 
 
 
24f27aa
f26658a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc577a
f26658a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82aa0d3
eefe007
 
 
 
b44a561
5b1b708
ba7eaa4
2027e35
 
 
 
 
 
 
eefe007
b44a561
 
 
ba7eaa4
2027e35
b44a561
 
 
 
 
 
 
 
2027e35
5b1b708
eefe007
5b1b708
24f27aa
 
aae052c
b8262b4
24f27aa
b8262b4
 
aae052c
 
 
 
 
 
 
ebc577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26658a
 
24f27aa
ebc577a
f26658a
 
6b77869
f26658a
ebc577a
a2dc111
 
ebc577a
a2dc111
b44a561
 
 
 
 
 
 
ebc577a
 
 
 
 
 
b44a561
ebc577a
 
 
 
 
 
 
 
a2dc111
ebc577a
 
 
 
f26658a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import streamlit as st
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModel
from huggingface_hub import login
import re
import copy
from modeling_st2 import ST2ModelV2, SignalDetector
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

hf_token = st.secrets["HUGGINGFACE_TOKEN"]
login(token=hf_token)


@st.cache_resource
def load_model():
    
    config = AutoConfig.from_pretrained("roberta-large")

    tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
    
    class Args:
        def __init__(self):
            
            self.dropout = 0.1
            self.signal_classification = True
            self.pretrained_signal_detector = False

    args = Args()

    model = ST2ModelV2(args)


    repo_id = "anamargarida/SpanExtractionWithSignalCls_2"  
    filename = "model.safetensors"  

    
    model_path = hf_hub_download(repo_id=repo_id, filename=filename)

    state_dict = load_file(model_path)

    model.load_state_dict(state_dict)
    
    return tokenizer, model


tokenizer, model = load_model()

model.eval()  
def extract_arguments(text, tokenizer, model, beam_search=True):
     
    class Args:
        def __init__(self):
            self.signal_classification = True
            self.pretrained_signal_detector = False
        
    args = Args()
    inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
    
    
    word_ids = inputs.word_ids()
    
    with torch.no_grad():
        outputs = model(**inputs)


    
    start_cause_logits = outputs["start_arg0_logits"][0]
    end_cause_logits = outputs["end_arg0_logits"][0]
    start_effect_logits = outputs["start_arg1_logits"][0]
    end_effect_logits = outputs["end_arg1_logits"][0]
    start_signal_logits = outputs["start_sig_logits"][0]
    end_signal_logits = outputs["end_sig_logits"][0]


    # Set the first and last token logits to a very low value to ignore them
    start_cause_logits[0] = -1e-4
    end_cause_logits[0] = -1e-4
    start_effect_logits[0] = -1e-4
    end_effect_logits[0] = -1e-4
    start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
    end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4

    
    # Beam Search for position selection
    if beam_search:
        indices1, indices2, score1, score2, topk_scores = model.beam_search_position_selector(
            start_cause_logits=start_cause_logits,
            end_cause_logits=end_cause_logits,
            start_effect_logits=start_effect_logits,
            end_effect_logits=end_effect_logits,
            topk=5
        )
        start_cause1, end_cause1, start_effect1, end_effect1 = indices1
        start_cause2, end_cause2, start_effect2, end_effect2 = indices2
    else:
        start_cause1 = start_cause_logits.argmax().item()
        end_cause1 = end_cause_logits.argmax().item()
        start_effect1 = start_effect_logits.argmax().item()
        end_effect1 = end_effect_logits.argmax().item()

        start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None

    
    has_signal = 1
    if args.signal_classification:
        if not args.pretrained_signal_detector:
            has_signal = outputs["signal_classification_logits"].argmax().item()
        else:
            has_signal = signal_detector.predict(text=batch["text"])

    if has_signal:
        start_signal_logits[0] = -1e-4
        end_signal_logits[0] = -1e-4
    
        start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
        end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
       
        start_signal = start_signal_logits.argmax().item()
        end_signal_logits[:start_signal] = -1e4
        end_signal_logits[start_signal + 5:] = -1e4
        end_signal = end_signal_logits.argmax().item()

    if not has_signal:
        start_signal, end_signal = None, None
        
    
    tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    token_ids = inputs["input_ids"][0]
    offset_mapping = inputs["offset_mapping"][0].tolist()
   
    def mark_text_by_position(original_text, start_token, end_token, color):
        """Marks text in the original string based on character positions."""
        # Inserts tags into the original text based on token offsets.
        if start_token is not None and end_token is not None:

            #st.write(f"Start: {start_token}, End: {end_token}")
            

            if start_token > end_token:
                return None
                
            if start_token <= end_token:
                
        
                start_idx, end_idx = offset_mapping[start_token][0], offset_mapping[end_token][1]
                 
                if start_idx is not None and end_idx is not None and start_idx < end_idx:
                    #st.write(f"Start_idx: {start_idx}, End_idx: {end_idx}")
                    
                    return (
                        original_text[:start_idx]
                        + f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
                        + original_text[start_idx:end_idx]
                        + "</mark>"
                        + original_text[end_idx:]
                    )
    
        return original_text  
    
        
        
    cause_text1 = mark_text_by_position(input_text, start_cause1, end_cause1, "#FFD700")  # yellow for cause
    effect_text1 = mark_text_by_position(input_text, start_effect1, end_effect1, "#90EE90")  # green for effect
    
    if start_signal is not None and end_signal is not None:
        signal_text = mark_text_by_position(input_text, start_signal, end_signal, "#FF6347")  # red for signal
    else: 
        signal_text = None
        
    if beam_search:
        cause_text2 = mark_text_by_position(input_text, start_cause2, end_cause2, "#FFD700")
        effect_text2 = mark_text_by_position(input_text, start_effect2, end_effect2, "#90EE90")
    else:
        cause_text2 = None
        effect_text2 = None

    if beam_search: 
        start_cause_probs = torch.softmax(start_cause_logits, dim=-1)
        end_cause_probs = torch.softmax(end_cause_logits, dim=-1)
        start_effect_probs = torch.softmax(start_effect_logits, dim=-1)
        end_effect_probs = torch.softmax(end_effect_logits, dim=-1)

        best_start_cause_score = start_cause_probs[start_cause1].item()
        best_end_cause_score = end_cause_probs[end_cause1].item()
        best_start_effect_score = start_effect_probs[start_effect1].item()
        best_end_effect_score = end_effect_probs[end_effect1].item()

        second_start_cause_score = start_cause_probs[start_cause2].item()
        second_end_cause_score = end_cause_probs[end_cause2].item()
        second_start_effect_score = start_effect_probs[start_effect2].item()
        second_end_effect_score = end_effect_probs[end_effect2].item()

        best_scores = {
                "Start Cause Score": round(best_start_cause_score, 4),
                "End Cause Score": round(best_end_cause_score, 4),
                "Start Effect Score": round(best_start_effect_score, 4),
                "End Effect Score": round(best_end_effect_score, 4),
                "Total Best Score [sum of log-probability scores]": round(score1, 4)
            }

        second_best_scores = {
            "Start Cause Score": round(second_start_cause_score, 4),
            "End Cause Score": round(second_end_cause_score, 4),
            "Start Effect Score": round(second_start_effect_score, 4),
            "End Effect Score": round(second_end_effect_score, 4),
            "Total Second Best Score [sum of log-probability scores]": round(score2, 4)
            }

        top5_scores = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:5]
        top5_scores = [(k, round(v, 4)) for k, v in top5_scores]

    
    else:
        best_scores = {}
        second_best_scores = {}
        top5_scores = {}
        
        
    return cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores 
    

st.title("Causal Relation Extraction")
input_text = st.text_area("Enter your text here:", height=100)
beam_search = st.radio("Enable Position Selector & Beam Search?", ('Yes', 'No')) == 'Yes'


if st.button("Extract"):
    if input_text:
        cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)

        # Display first relation
        st.write("## Relation 1:")

        if cause_text1 is None or effect_text1 is None: 
            st.write("The prediction is not correct for at least one span: The position of the predicted end token comes before the position of the start token.")
        else:
            st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
            st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
            st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)

            if beam_search:

                # Display dictionary in Streamlit
                st.markdown(f"<strong>Best Tuple Scores:</strong>", unsafe_allow_html=True)
                st.json(best_scores)

        
                # Display second relation if beam search is enabled
                st.write("## Relation 2:")
                st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
                st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
                st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
                
                st.markdown(f"<strong>Second best Tuple Scores:</strong>", unsafe_allow_html=True)
                st.json(second_best_scores)

                st.markdown(f"<strong>top5_scores [sum of log-probability scores]:</strong>", unsafe_allow_html=True)
                # Unpack top 5 scores 
                # first, second, third, fourth, fifth = top_5_scores
                st.json(top5_scores)

    else:
        st.warning("Please enter some text before extracting.")