File size: 816 Bytes
a3445e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model_name = "anasmkh/customized_llama3.1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)

generator = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=64,
    temperature=1.5,
    min_p=0.1
)

def generate_response(prompt):
  messages = [
    {"role": "user", "content": prompt},
  ]
  response = generator(messages)[0]['generated_text']
  return response.split("<|end_header_id|>")[1].strip()

demo = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=5, label="Enter your prompt"),
    outputs=gr.Textbox(label="Model Response")
)

demo.launch()