Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import shutil
|
|
|
3 |
import gradio as gr
|
4 |
import qdrant_client
|
5 |
from getpass import getpass
|
@@ -33,13 +34,14 @@ client = None
|
|
33 |
vector_store = None
|
34 |
storage_context = None
|
35 |
|
36 |
-
#
|
|
|
|
|
|
|
37 |
upload_dir = "uploaded_files"
|
38 |
if not os.path.exists(upload_dir):
|
39 |
os.makedirs(upload_dir)
|
40 |
-
|
41 |
-
# A set to track which files have already been processed.
|
42 |
-
processed_files = set()
|
43 |
|
44 |
# -------------------------------------------------------
|
45 |
# Function to process uploaded files and update the index.
|
@@ -47,45 +49,66 @@ processed_files = set()
|
|
47 |
def process_upload(files):
|
48 |
"""
|
49 |
Accepts a list of uploaded file paths, saves them to a persistent folder,
|
50 |
-
loads
|
51 |
"""
|
52 |
-
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
|
53 |
|
|
|
54 |
new_file_paths = []
|
55 |
-
# Loop over each uploaded file.
|
56 |
for file_path in files:
|
57 |
file_name = os.path.basename(file_path)
|
58 |
dest = os.path.join(upload_dir, file_name)
|
59 |
-
|
60 |
-
|
61 |
-
if not os.path.exists(dest):
|
62 |
-
shutil.copy(file_path, dest)
|
63 |
new_file_paths.append(dest)
|
64 |
-
processed_files.add(file_name)
|
65 |
|
|
|
66 |
if not new_file_paths:
|
67 |
return "No new documents to add."
|
68 |
|
69 |
# Load only the new documents.
|
70 |
new_documents = SimpleDirectoryReader(input_files=new_file_paths).load_data()
|
71 |
|
72 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
if index is None:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
collection_name="paper",
|
78 |
-
client=client,
|
79 |
-
enable_hybrid=True,
|
80 |
-
batch_size=20,
|
81 |
)
|
82 |
-
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
83 |
-
index = VectorStoreIndex.from_documents(new_documents, storage_context=storage_context)
|
84 |
else:
|
85 |
-
# Otherwise, insert the new documents into the existing index.
|
86 |
index.insert_documents(new_documents)
|
87 |
|
88 |
-
# Reinitialize query and chat engines
|
89 |
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
|
90 |
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
91 |
chat_engine = index.as_chat_engine(
|
@@ -104,15 +127,12 @@ def process_upload(files):
|
|
104 |
# -------------------------------------------------------
|
105 |
def chat_with_ai(user_input, chat_history):
|
106 |
global chat_engine
|
107 |
-
# Check if the chat engine is initialized.
|
108 |
if chat_engine is None:
|
109 |
return chat_history, "Please upload documents first."
|
110 |
|
111 |
response = chat_engine.chat(user_input)
|
112 |
references = response.source_nodes
|
113 |
ref = []
|
114 |
-
|
115 |
-
# Extract file names from the source nodes (if available)
|
116 |
for node in references:
|
117 |
file_name = node.metadata.get('file_name')
|
118 |
if file_name and file_name not in ref:
|
@@ -135,9 +155,9 @@ def gradio_interface():
|
|
135 |
with gr.Blocks() as demo:
|
136 |
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
|
137 |
|
|
|
138 |
with gr.Tab("Upload Documents"):
|
139 |
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
|
140 |
-
# The file upload widget: we specify allowed file types.
|
141 |
file_upload = gr.File(
|
142 |
label="Upload Files",
|
143 |
file_count="multiple",
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
+
import time
|
4 |
import gradio as gr
|
5 |
import qdrant_client
|
6 |
from getpass import getpass
|
|
|
34 |
vector_store = None
|
35 |
storage_context = None
|
36 |
|
37 |
+
# Define a persistent collection name.
|
38 |
+
collection_name = "paper"
|
39 |
+
|
40 |
+
# Use a persistent folder to store uploaded files.
|
41 |
upload_dir = "uploaded_files"
|
42 |
if not os.path.exists(upload_dir):
|
43 |
os.makedirs(upload_dir)
|
44 |
+
# We no longer clear the folder so previously uploaded files are retained.
|
|
|
|
|
45 |
|
46 |
# -------------------------------------------------------
|
47 |
# Function to process uploaded files and update the index.
|
|
|
49 |
def process_upload(files):
|
50 |
"""
|
51 |
Accepts a list of uploaded file paths, saves them to a persistent folder,
|
52 |
+
loads new documents, and builds or updates the vector index and chat engine.
|
53 |
"""
|
54 |
+
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
|
55 |
|
56 |
+
# Copy files into the upload directory if not already present.
|
57 |
new_file_paths = []
|
|
|
58 |
for file_path in files:
|
59 |
file_name = os.path.basename(file_path)
|
60 |
dest = os.path.join(upload_dir, file_name)
|
61 |
+
if not os.path.exists(dest):
|
62 |
+
shutil.copy(file_path, dest)
|
|
|
|
|
63 |
new_file_paths.append(dest)
|
|
|
64 |
|
65 |
+
# If no new files are uploaded, notify the user.
|
66 |
if not new_file_paths:
|
67 |
return "No new documents to add."
|
68 |
|
69 |
# Load only the new documents.
|
70 |
new_documents = SimpleDirectoryReader(input_files=new_file_paths).load_data()
|
71 |
|
72 |
+
# Initialize a persistent Qdrant client.
|
73 |
+
client = qdrant_client.QdrantClient(
|
74 |
+
path="./qdrant_db",
|
75 |
+
prefer_grpc=True
|
76 |
+
)
|
77 |
+
|
78 |
+
# Ensure the collection exists.
|
79 |
+
from qdrant_client.http import models
|
80 |
+
existing_collections = {col.name for col in client.get_collections().collections}
|
81 |
+
if collection_name not in existing_collections:
|
82 |
+
client.create_collection(
|
83 |
+
collection_name=collection_name,
|
84 |
+
vectors_config=models.VectorParams(
|
85 |
+
size=1536, # text-embedding-ada-002 produces 1536-dimensional vectors.
|
86 |
+
distance=models.Distance.COSINE
|
87 |
+
)
|
88 |
+
)
|
89 |
+
# Wait briefly for the collection creation to complete.
|
90 |
+
time.sleep(1)
|
91 |
+
|
92 |
+
# Initialize (or re-use) the vector store.
|
93 |
+
vector_store = QdrantVectorStore(
|
94 |
+
collection_name=collection_name,
|
95 |
+
client=client,
|
96 |
+
enable_hybrid=True,
|
97 |
+
batch_size=20,
|
98 |
+
)
|
99 |
+
|
100 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
101 |
+
|
102 |
+
# Build the index if it doesn't exist; otherwise, update it.
|
103 |
if index is None:
|
104 |
+
index = VectorStoreIndex.from_documents(
|
105 |
+
SimpleDirectoryReader(upload_dir).load_data(),
|
106 |
+
storage_context=storage_context
|
|
|
|
|
|
|
|
|
107 |
)
|
|
|
|
|
108 |
else:
|
|
|
109 |
index.insert_documents(new_documents)
|
110 |
|
111 |
+
# Reinitialize query and chat engines to reflect updates.
|
112 |
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
|
113 |
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
114 |
chat_engine = index.as_chat_engine(
|
|
|
127 |
# -------------------------------------------------------
|
128 |
def chat_with_ai(user_input, chat_history):
|
129 |
global chat_engine
|
|
|
130 |
if chat_engine is None:
|
131 |
return chat_history, "Please upload documents first."
|
132 |
|
133 |
response = chat_engine.chat(user_input)
|
134 |
references = response.source_nodes
|
135 |
ref = []
|
|
|
|
|
136 |
for node in references:
|
137 |
file_name = node.metadata.get('file_name')
|
138 |
if file_name and file_name not in ref:
|
|
|
155 |
with gr.Blocks() as demo:
|
156 |
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
|
157 |
|
158 |
+
# Use Tabs to separate the file upload and chat interfaces.
|
159 |
with gr.Tab("Upload Documents"):
|
160 |
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
|
|
|
161 |
file_upload = gr.File(
|
162 |
label="Upload Files",
|
163 |
file_count="multiple",
|