Spaces:
Sleeping
Sleeping
File size: 2,016 Bytes
b0f3a2d 17c19e6 b0f3a2d 17c19e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import streamlit as st
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, LabelEncoder
# Load the model
model = tf.keras.models.load_model("banking_model.keras")
# Function to preprocess input data
def preprocess_input(input_data, label_encoders, scaler):
# Convert input data to DataFrame
input_df = pd.DataFrame([input_data])
# Encode categorical variables
for col in label_encoders:
input_df[col] = label_encoders[col].transform(input_df[col])
# Scale numerical variables
numerical_columns = input_df.select_dtypes(include=["int64", "float64"]).columns
input_df[numerical_columns] = scaler.transform(input_df[numerical_columns])
return input_df
# Streamlit app
def main():
st.title("Banking Stage Classification")
# Input fields
st.sidebar.header("User Input Features")
# Example feature inputs, adjust according to your actual features
credit_expiration = st.sidebar.number_input("Credit Expiration", min_value=0, value=0)
dpd = st.sidebar.number_input("DPD", min_value=0, value=0)
feature1 = st.sidebar.selectbox("Feature 1", options=["Yes", "No"])
feature2 = st.sidebar.selectbox("Feature 2", options=["Yes", "No"])
stage_last_month = st.sidebar.selectbox("Stage As Last Month", options=[1, 2, 3])
# Prepare input data
input_data = {
'Credit Expiration': credit_expiration,
'DPD': dpd,
'Feature 1': feature1,
'Feature 2': feature2,
'Stage As Last Month': stage_last_month
}
# Preprocess the input
processed_input = preprocess_input(input_data, label_encoders, scaler)
# Make prediction
if st.sidebar.button("Predict"):
prediction = model.predict(processed_input)
predicted_stage = np.argmax(prediction, axis=1) + 1 # Adjust if necessary
st.success(f"Predicted Current Stage: {predicted_stage[0]}")
if __name__ == "__main__":
main() |