Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_fastai | |
import gradio as gr | |
from fastai.vision.all import * | |
repo_id = "ancebuc/grapes-segmentation" | |
learner = from_pretrained_fastai(repo_id) | |
labels = learner.dls.vocab | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = torch.jit.load("unet.pth") | |
model = model.cpu() | |
model.eval() | |
import torchvision.transforms as transforms | |
def transform_image(image): | |
my_transforms = transforms.Compose([transforms.ToTensor(), | |
transforms.Normalize( | |
[0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225])]) | |
image_aux = image | |
return my_transforms(image_aux).unsqueeze(0).to(device) | |
# Definimos una función que se encarga de llevar a cabo las predicciones | |
def predict(img): | |
img = PILImage.create(img) | |
image = transforms.Resize((480,640))(img) | |
tensor = transform_image(image=image) | |
with torch.no_grad(): | |
outputs = model(tensor) | |
outputs = torch.argmax(outputs,1) | |
mask = np.array(outputs.cpu()) | |
mask = np.reshape(mask,(480,640)) | |
# Añadimos una dimesionalidad para colocar color | |
mask = np.expand_dims(mask, axis=2) | |
# Y añadimos los tres canales | |
mask = np.repeat(mask, 3, axis=2) | |
# Creamos las máscaras | |
uvas = np.all(mask == [1, 1, 1], axis=2) | |
hojas = np.all(mask == [2, 2, 2], axis=2) | |
poste = np.all(mask == [3, 3, 3], axis=2) | |
madera = np.all(mask == [4, 4, 4], axis=2) | |
# Uvas | |
mask[uvas] = [255, 255, 255] | |
# Hojas | |
mask[hojas] = [0, 255, 0] | |
# Poste | |
mask[poste] = [0, 0, 255] | |
# Madera | |
mask[madera] = [255, 0, 0] | |
return Image.fromarray(mask.astype('uint8')) | |
# Creamos la interfaz y la lanzamos. | |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.inputs.Image(shape=(128, 128)),examples=['color_158.jpg','color_157.jpg']).launch(share=False) |