ancebuc's picture
Update app.py
eb64ea1 verified
raw
history blame
2 kB
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
repo_id = "ancebuc/grapes-segmentation"
learner = from_pretrained_fastai(repo_id)
labels = learner.dls.vocab
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.jit.load("unet.pth")
model = model.cpu()
model.eval()
import torchvision.transforms as transforms
def transform_image(image):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0).to(device)
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
img = PILImage.create(img)
image = transforms.Resize((480,640))(img)
tensor = transform_image(image=image)
with torch.no_grad():
outputs = model(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs.cpu())
mask = np.reshape(mask,(480,640))
# Añadimos una dimesionalidad para colocar color
mask = np.expand_dims(mask, axis=2)
# Y añadimos los tres canales
mask = np.repeat(mask, 3, axis=2)
# Creamos las máscaras
uvas = np.all(mask == [1, 1, 1], axis=2)
hojas = np.all(mask == [2, 2, 2], axis=2)
poste = np.all(mask == [3, 3, 3], axis=2)
madera = np.all(mask == [4, 4, 4], axis=2)
# Uvas
mask[uvas] = [255, 255, 255]
# Hojas
mask[hojas] = [0, 255, 0]
# Poste
mask[poste] = [0, 0, 255]
# Madera
mask[madera] = [255, 0, 0]
return Image.fromarray(mask.astype('uint8'))
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.inputs.Image(shape=(128, 128)),examples=['color_158.jpg','color_157.jpg']).launch(share=False)