Spaces:
Runtime error
Runtime error
import random | |
import json | |
import torch | |
from nltk_utils import bag_of_words, tokenize | |
from run_segbot import get_model | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
with open('intents.json', 'r') as json_data: | |
intents = json.load(json_data) | |
#FILE = "data.pth" | |
#data = torch.load(FILE) | |
#input_size = data["input_size"] | |
#hidden_size = data["hidden_size"] | |
#output_size = data["output_size"] | |
#all_words = data['all_words'] | |
#tags = data['tags'] | |
#model_state = data["model_state"] | |
#model = NeuralNet(input_size, hidden_size, output_size).to(device) | |
#model.load_state_dict(model_state) | |
#with open('model.pickle', 'rb') as f: | |
# model = pickle.load(f) | |
model = get_model() | |
model.eval() | |
bot_name = "Sam" | |
def get_response(msg): | |
sentence = tokenize(msg) | |
X = bag_of_words(sentence, all_words) | |
X = X.reshape(1, X.shape[0]) | |
X = torch.from_numpy(X).to(device) | |
output = model(X) | |
_, predicted = torch.max(output, dim=1) | |
tag = tags[predicted.item()] | |
probs = torch.softmax(output, dim=1) | |
prob = probs[0][predicted.item()] | |
if prob.item() > 0.75: | |
for intent in intents['intents']: | |
if tag == intent["tag"]: | |
return random.choice(intent['responses']) | |
return "I do not understand..." | |
if __name__ == "__main__": | |
print("Let's chat! (type 'quit' to exit)") | |
while True: | |
# sentence = "do you use credit cards?" | |
sentence = input("You: ") | |
if sentence == "quit": | |
break | |
resp = get_response(sentence) | |
print(resp) | |