Spaces:
Running
Running
File size: 20,492 Bytes
8c2c8d0 7c410d7 09096dc 8c2c8d0 09096dc 7c410d7 776721c 7c410d7 09096dc 8c2c8d0 353129b 8c2c8d0 09096dc 8c2c8d0 09096dc e58b4c7 09096dc 8c2c8d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
from itertools import product as cproduct
from itertools import combinations
from pathlib import Path
from pylab import *
import base64
import json
import math
import os
import pandas as pd
import streamlit as st
import subprocess
import time
import shutil
import zipfile
import io
import sys
from feeed.feature_extractor import extract_features
st.set_page_config(layout='wide')
INPUT_XES="output/inputlog_temp.xes"
LOGO_PATH="gedi/utils/logo.png"
def get_base64_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
def play_header():
# Convert local image to base64
logo_base64 = get_base64_image(LOGO_PATH)
# HTML and CSS for placing the logo at the top left corner
head1, head2 = st.columns([1,8])
head1.markdown(
f"""
<style>
.header-logo {{
display: flex;
align-items: center;
justify-content: flex-start;
}}
.header-logo img {{
max-width: 100%; /* Adjust the size as needed */
overflow: hidden;
object-fit: contain;
padding-top: 12px;
}}
</style>
<div class="header-logo">
<img src="data:image/png;base64,{logo_base64}" alt="Logo">
</div>
""",
unsafe_allow_html=True
)
with head2:
"""
# interactive GEDI
"""
"""
## **G**enerating **E**vent **D**ata with **I**ntentional Features for Benchmarking Process Mining
"""
return
def double_switch(label_left, label_right, third_label=None, fourth_label=None, value=False):
if third_label==None and fourth_label==None:
# Create two columns for the labels and toggle switch
col0, col1, col2, col3, col4 = st.columns([2,1,1,1,2])
else:
# Create two columns for the labels and toggle switch
col0, col1, col2, col3, col4, col5, col6, col7, col8 = st.columns([1,1,1,1,1,1,1,1,1])
# Add labels to the columns
with col1:
st.write(label_left)
with col2:
# Create the toggle switch
toggle_option = st.toggle(" ",value=value,
key="toggle_switch_"+label_left,
)
with col3:
st.write(label_right)
if third_label is None and fourth_label is None:return toggle_option
else:
with col5:
st.write(third_label)
with col6:
# Create the toggle switch
toggle_option_2 = st.toggle(" ",value=False,
key="toggle_switch_"+third_label,
)
with col7:
st.write(fourth_label)
return toggle_option, toggle_option_2
def multi_button(labels):
cols = st.columns(len(labels))
activations = []
for col, label in zip(cols, labels):
activations.append(col.button(label))
return activations
def input_multicolumn(labels, default_values, n_cols=5):
result = {}
cols = st.columns(n_cols)
factor = math.ceil(len(labels)/n_cols)
extended = cols.copy()
for _ in range(factor):
extended.extend(cols)
for label, default_value, col in zip(labels, default_values, extended):
with col:
result[label] = col.text_input(label, default_value, key=f"input_"+label+'_'+str(default_value))
return result.values()
def split_list(input_list, n):
# Calculate the size of each chunk
k, m = divmod(len(input_list), n)
# Use list comprehension to create n sublists
return [input_list[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)]
def get_ranges_from_stats(stats, tuple_values):
col_for_row = ", ".join([f"x[\'{i}\'].astype(float)" for i in tuple_values])
stats['range'] = stats.apply(lambda x: tuple([eval(col_for_row)]), axis=1)
#tasks = eval(f"list(itertools.product({(parameters*n_para_obj)[:-2]}))")
result = [f"np.around({x}, 2)" for x in stats['range']]
result = ", ".join(result)
return result
def create_objectives_grid(df, objectives, n_para_obj=2, method="combinatorial"):
if "combinatorial" in method:
sel_features = df.index.to_list()
parameters_o = "objectives, "
parameters = get_ranges_from_stats(df, sorted(objectives))
objectives = sorted(sel_features)
tasks = f"list(cproduct({parameters}))[0]"
elif method=="range-from-csv":
tasks = ""
for objective in objectives:
min_col, max_col, step_col = st.columns(3)
with min_col:
selcted_min = st.slider(objective+': min', min_value=float(df[objective].min()), max_value=float(df[objective].max()), value=df[objective].quantile(0.1), step=0.1, key=objective+"min")
with max_col:
selcted_max = st.slider('max', min_value=selcted_min, max_value=float(df[objective].max()), value=df[objective].quantile(0.9), step=0.1, key=objective+"max")
with step_col:
step_value = st.slider('step', min_value=float(df[objective].min()), max_value=float(df[objective].quantile(0.9)), value=df[objective].median()/(df[objective].min()+0.0001), step=0.01, key=objective+"step")
tasks += f"np.around(np.arange({selcted_min}, {selcted_max}+{step_value}, {step_value}),2), "
else :#method=="range-manual":
experitments = []
tasks=""
if objectives != None:
cross_labels = [feature[0]+': '+feature[1] for feature in list(cproduct(objectives,['min', 'max', 'step']))]
cross_values = [round(eval(str(combination[0])+combination[1]), 2) for combination in list(cproduct(list(df.values()), ['*1', '*2', '/3']))]
ranges = zip(objectives, split_list(list(input_multicolumn(cross_labels, cross_values, n_cols=3)), n_para_obj))
for objective, range_value in ranges:
selcted_min, selcted_max, step_value = range_value
tasks += f"np.around(np.arange({selcted_min}, {selcted_max}+{step_value}, {step_value}),2), "
try:
cartesian_product = list(cproduct(*eval(tasks)))
experiments = [{key: value[idx] for idx, key in enumerate(objectives)} for value in cartesian_product]
return experiments
except SyntaxError as e:
st.write("Please select valid features above.")
sys.exit(1)
except TypeError as e:
st.write("Please select at least 2 values to define.")
sys.exit(1)
def set_generator_experiments(generator_params):
def handle_csv_file(uploaded_file,grid_option):
#TODO: This code is duplicated. Should be moved and removed.
def column_mappings():
column_names_short = {
'rvpnot': 'ratio_variants_per_number_of_traces',
'rmcv': 'ratio_most_common_variant',
'tlcv': 'trace_len_coefficient_variation',
'mvo': 'mean_variant_occurrence',
'enve': 'epa_normalized_variant_entropy',
'ense': 'epa_normalized_sequence_entropy',
'eself': 'epa_sequence_entropy_linear_forgetting',
'enself': 'epa_normalized_sequence_entropy_linear_forgetting',
'eseef': 'epa_sequence_entropy_exponential_forgetting',
'enseef': 'epa_normalized_sequence_entropy_exponential_forgetting'
}
return column_names_short
# uploaded_file = st.file_uploader("Pick a csv-file containing feature values for features:", type="csv")
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
if len(df.columns) <= 1:
raise pd.errors.ParserError("Please select a file withat least two columns (e.g. log, feature) and use ',' as a delimiter.")
columns_to_rename = {col: column_mappings()[col] for col in df.columns if col in column_mappings()}
# Rename the matching columns
df.rename(columns=columns_to_rename, inplace=True)
sel_features = st.multiselect("Selected features", list(df.columns), list(df.columns)[-1])
if sel_features:
df = df[sel_features]
return df, sel_features
return None, None
def handle_combinatorial(sel_features, stats, tuple_values):
triangular_option = double_switch("Square", "Triangular")
if triangular_option:
experiments = []
elements = sel_features
# List to store all combinations
all_combinations = [combinations(sel_features, r) for r in range(1, len(sel_features) + 1)]
all_combinations = [comb for sublist in all_combinations for comb in sublist]
# Print or use the result as needed
for comb in all_combinations:
sel_stats = stats.loc[sorted(list(comb))]
experiments += create_objectives_grid(sel_stats, tuple_values, n_para_obj=len(tuple_values), method="combinatorial")
else: # Square
experiments = create_objectives_grid(stats, tuple_values, n_para_obj=len(tuple_values), method="combinatorial")
return experiments
def handle_csv_option(grid_option, df, sel_features):
if grid_option:
combinatorial = double_switch("Range", "Combinatorial")
if combinatorial:
add_quantile = st.slider('Add %-quantile', min_value=0.0, max_value=100.0, value=50.0, step=5.0)
stats = df.describe().transpose().sort_index()
stats[f"{int(add_quantile)}%"] = df.quantile(q=add_quantile / 100)
st.write(stats)
tuple_values = st.multiselect("Tuples including", list(stats.columns)[3:], default=['min', 'max'])
return handle_combinatorial(sel_features, stats, tuple_values)
else: # Range
return create_objectives_grid(df, sel_features, n_para_obj=len(sel_features), method="range-from-csv")
else: # Point
st.write(df)
return df.to_dict(orient='records')
def feature_select():
return st.multiselect("Selected features", list(generator_params['experiment'].keys()),
list(generator_params['experiment'].keys())[-1])
def handle_manual_option(grid_option):
if grid_option:
combinatorial = double_switch("Range", "Combinatorial", value=True)
if combinatorial:
col1, col2 = st.columns([1,4])
with col1:
num_values = st.number_input('How many values to define?', min_value=2, step=1)
with col2:
sel_features = feature_select()
filtered_dict = {key: generator_params['experiment'][key] for key in sel_features if key in generator_params['experiment']}
values_indexes = ["value "+str(i+1) for i in range(num_values)]
values_defaults = ['*(1+2*0.'+str(i)+')' for i in range(num_values)]
cross_labels = [feature[0]+': '+feature[1] for feature in list(cproduct(sel_features,values_indexes))]
cross_values = [round(eval(str(combination[0])+combination[1]), 2) for combination in list(cproduct(list(filtered_dict.values()), values_defaults))]
parameters = split_list(list(input_multicolumn(cross_labels, cross_values, n_cols=num_values)), len(sel_features))
tasks = f"list({parameters})"
tasks_df = pd.DataFrame(eval(tasks), index=sel_features, columns=values_indexes)
tasks_df = tasks_df.astype(float)
return handle_combinatorial(sel_features, tasks_df, values_indexes)
else: # Range
sel_features = feature_select()
return create_objectives_grid(generator_params['experiment'], sel_features, n_para_obj=len(sel_features), method="range-manual")
else: # Point
sel_features = feature_select()
#sel_features = st.multiselect("Selected features", list(generator_params['experiment'].keys()))
experiment = {sel_feature: float(st.text_input(sel_feature, generator_params['experiment'][sel_feature])) for sel_feature in sel_features}
return [experiment]
return[]
grid_option, csv_option = double_switch("Point-", "Grid-based", third_label="Manual", fourth_label="From File")
if csv_option:
uploaded_file = st.file_uploader("Pick a csv-file containing feature values for features (or) an xes-event log:", type=["csv","xes"])
experiments = []
if uploaded_file is not None:
if uploaded_file.name.endswith('.xes'):
with open(f"{uploaded_file.name}", 'wb') as f:
f.write(uploaded_file.getbuffer())
sel_features = st.multiselect("Selected features", list(generator_params['experiment'].keys()))
xes_features = extract_features(f"{uploaded_file.name}", sel_features)
del xes_features['log']
# removing the temporary file
uploaded_file.close()
if os.path.exists(f"{uploaded_file.name}"):
os.remove(f"{uploaded_file.name}")
xes_features = {key: float(value) for key, value in xes_features.items()}
experiments = [xes_features]
if uploaded_file.name.endswith('.csv'):
df, sel_features = handle_csv_file(uploaded_file,grid_option)
if df is not None and sel_features is not None:
experiments = handle_csv_option(grid_option, df, sel_features)
else:
experiments = []
else: # Manual
experiments = handle_manual_option(grid_option)
generator_params['experiment'] = experiments
st.write(f"...result in {len(generator_params['experiment'])} experiment(s)")
"""
#### Configuration space
"""
updated_values = input_multicolumn(generator_params['config_space'].keys(), generator_params['config_space'].values())
for key, new_value in zip(generator_params['config_space'].keys(), updated_values):
generator_params['config_space'][key] = eval(new_value)
generator_params['n_trials'] = int(st.text_input('n_trials', generator_params['n_trials']))
return generator_params
def sort_key(val):
parts = val.split('_')
# Extract and convert the numeric parts
part1 = int(parts[0][5:]) # e.g., from 'genEL1', extract '1'
return (part1)
if __name__ == '__main__':
play_header()
# Load the configuration layout from a JSON file
config_layout = json.load(open("config_files/config_layout.json"))
# Define available pipeline steps
step_candidates = ["event_logs_generation", "feature_extraction"]
# Streamlit multi-select for pipeline steps
pipeline_steps = st.multiselect(
"Choose pipeline step",
step_candidates,
["event_logs_generation"]
)
step_configs = []
set_col, view_col = st.columns([3, 2])
# Iterate through selected pipeline steps
for pipeline_step in pipeline_steps:
step_config = next(d for d in config_layout if d['pipeline_step'] == pipeline_step)
with set_col:
st.header(pipeline_step)
# Iterate through step configuration keys
for step_key in step_config.keys():
if step_key == "generator_params":
st.subheader("Set-up experiments")
step_config[step_key] = set_generator_experiments(step_config[step_key])
elif step_key == "feature_params":
layout_features = list(step_config[step_key]['feature_set'])
step_config[step_key]["feature_set"] = st.multiselect(
"features to extract",
layout_features
)
elif step_key != "pipeline_step":
step_config[step_key] = st.text_input(step_key, step_config[step_key])
with view_col:
st.write(step_config)
step_configs.append(step_config)
# Convert step configurations to JSON
config_file = json.dumps(step_configs, indent=4)
# Streamlit input for output file path
output_path = st.text_input("Output file path", "config_files/experiment_config.json")
# Ensure output directory exists
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Streamlit multi-button for saving options
button_col1, button_col2 = st.columns([1, 1])
with button_col1:
create_button = st.download_button(label="Download config file", data=config_file, file_name=os.path.basename(output_path), mime='application/json')
if pipeline_steps != ["event_logs_generation"]:
st.write("Run command:")
st.code(f"python -W ignore main.py -a {output_path}", language='bash')
if pipeline_steps == ["event_logs_generation"]:
with button_col2:
create_run_button = st.button("Run Generation")
if create_run_button:
# Save configuration to the specified output path
with open(output_path, "w") as f:
f.write(config_file)
command = f"python -W ignore main.py -a {output_path}".split()
# Prepare output path for feature extraction
directory = Path(step_config['output_path']).parts
path = os.path.join(directory[0], 'features', *directory[1:]) # for feature storage
path_to_logs = os.path.join(*directory[:]) # for log storage
# Clean existing output path if it exists
if os.path.exists(path):
shutil.rmtree(path)
if os.path.exists(path_to_logs):
shutil.rmtree(path_to_logs)
# Simulate running the command with a loop and update progress
with st.spinner("Generating logs.."):
# Run the actual command
result = subprocess.run(command, capture_output=True, text=True)
st.success("Logs generated!")
st.write("## Results")
# Collect all file paths from the output directory
file_paths = [os.path.join(root, file)
for root, _, files in os.walk(path)
for file in files]
# Download the generated logs as a ZIP file
download_file_paths = [os.path.join(root, file)
for root, _, files in os.walk(path_to_logs)
for file in files]
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
for file in download_file_paths:
zip_file.write(file, os.path.basename(file))
zip_buffer.seek(0)
st.download_button(label="Download generated logs", data=zip_buffer, file_name='generated_logs.zip', mime='application/zip')
# Read and concatenate all JSON files into a DataFrame
dataframes = pd.concat([pd.read_json(file, lines=True) for file in file_paths], ignore_index=True)
# Reorder columns with 'target_similarity' as the last column
columns = [col for col in dataframes.columns if col != 'target_similarity'] + ['target_similarity']
dataframes = dataframes[columns]
dataframes = dataframes.sort_values(by='log', key=lambda col: col.map(sort_key))
# Set 'log' as the index
dataframes['log'] = dataframes['log'].astype(str)
xticks_labels=dataframes['log'].apply(lambda x: x.split('_')[0])#+'_'+x.split('_')[1][:4]+'_'+x.split('_')[2][:4])
dataframes.set_index('log', inplace=True)
col1, col2 = st.columns([2, 3])
with col1:
st.dataframe(dataframes)
with col2:
plt.figure(figsize=(6, 3))
plt.plot(xticks_labels, dataframes['target_similarity'], 'o-')
plt.xlabel('Log')
plt.ylabel('Target Similarity')
if len(dataframes) > 10:
plt.xticks(rotation=30, ha='right')
else:
plt.xticks(rotation=0, ha='center')
plt.tight_layout()
st.pyplot(plt, dpi=400) |