Spaces:
Paused
Paused
import tensorflow as tf | |
from transformers import TFAutoModel | |
class FixMatchTune(tf.keras.Model): | |
def __init__( | |
self, | |
encoder_name="readerbench/RoBERT-base", | |
num_classes=4, | |
**kwargs | |
): | |
super(FixMatchTune,self).__init__(**kwargs) | |
self.bert = TFAutoModel.from_pretrained(encoder_name) | |
self.num_classes = num_classes | |
self.weak_augment = tf.keras.layers.GaussianNoise(stddev=0.5) | |
self.strong_augment = tf.keras.layers.GaussianNoise(stddev=5) | |
self.cls_head = tf.keras.Sequential([ | |
tf.keras.layers.Dense(256,activation="relu"), | |
tf.keras.layers.Dropout(0.2), | |
tf.keras.layers.Dense(64,activation="relu"), | |
tf.keras.layers.Dense(self.num_classes, activation="softmax") | |
]) | |
def call(self, inputs, training): | |
ids, mask = inputs | |
embeds = self.bert(input_ids=ids, attention_mask=mask,training=training).pooler_output | |
strongs = self.strong_augment(embeds,training=training) | |
weaks = self.weak_augment(embeds,training=training) | |
strong_preds = self.cls_head(strongs,training=training) | |
weak_preds = self.cls_head(weaks,training=training) | |
return weak_preds, strong_preds | |