Spaces:
Running
Running
import io | |
import torch | |
import gradio as gr | |
import matplotlib | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection | |
extractor = AutoFeatureExtractor.from_pretrained("hustvl/yolos-tiny") | |
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny") | |
matplotlib.pyplot.switch_backend('Agg') | |
COLORS = [ | |
[0.000, 0.447, 0.741], | |
[0.850, 0.325, 0.098], | |
[0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], | |
[0.466, 0.674, 0.188], | |
[0.301, 0.745, 0.933] | |
] | |
PRED_THRESHOLD = 0.90 | |
def fig2img(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
img = Image.open(buf) | |
return img | |
def composite_predictions(img, processed_predictions): | |
keep = processed_predictions["labels"] == 1 # only interested in people | |
boxes = processed_predictions["boxes"][keep].tolist() | |
scores = processed_predictions["scores"][keep].tolist() | |
labels = processed_predictions["labels"][keep].tolist() | |
labels = [model.config.id2label[x] for x in labels] | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(img) | |
axis = plt.gca() | |
colors = COLORS * 100 | |
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): | |
axis.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3)) | |
axis.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) | |
plt.axis("off") | |
img = fig2img(plt.gcf()) | |
matplotlib.pyplot.close() | |
return img | |
def process(img): | |
inputs = extractor(images=img, return_tensors="pt") | |
outputs = model(**inputs) | |
img_size = torch.tensor([tuple(reversed(img.size))]) | |
processed = extractor.post_process_object_detection(outputs, PRED_THRESHOLD, img_size) | |
# Composite image and prediction bounding boxes + labels prediction | |
return composite_predictions(img, processed[0]) | |
demo = gr.Interface(fn=process, inputs=[gr.Image(source="webcam", streaming=True, type='pil')], outputs=["image"], live=True) | |
demo.launch() | |