|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
|
Wav2Vec2PreTrainedModel,
|
|
Wav2Vec2Model
|
|
)
|
|
from transformers.models.hubert.modeling_hubert import (
|
|
HubertPreTrainedModel,
|
|
HubertModel
|
|
)
|
|
|
|
from src.modeling_outputs import SpeechClassifierOutput
|
|
|
|
|
|
class Wav2Vec2ClassificationHead(nn.Module):
|
|
"""Head for wav2vec classification task."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.dropout = nn.Dropout(config.final_dropout)
|
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
def forward(self, features, **kwargs):
|
|
x = features
|
|
x = self.dropout(x)
|
|
x = self.dense(x)
|
|
x = torch.tanh(x)
|
|
x = self.dropout(x)
|
|
x = self.out_proj(x)
|
|
return x
|
|
|
|
|
|
class Wav2Vec2ForSpeechClassification(Wav2Vec2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.pooling_mode = config.pooling_mode
|
|
self.config = config
|
|
|
|
self.wav2vec2 = Wav2Vec2Model(config)
|
|
self.classifier = Wav2Vec2ClassificationHead(config)
|
|
|
|
self.init_weights()
|
|
|
|
def freeze_feature_extractor(self):
|
|
self.wav2vec2.feature_extractor._freeze_parameters()
|
|
|
|
def merged_strategy(
|
|
self,
|
|
hidden_states,
|
|
mode="mean"
|
|
):
|
|
if mode == "mean":
|
|
outputs = torch.mean(hidden_states, dim=1)
|
|
elif mode == "sum":
|
|
outputs = torch.sum(hidden_states, dim=1)
|
|
elif mode == "max":
|
|
outputs = torch.max(hidden_states, dim=1)[0]
|
|
else:
|
|
raise Exception(
|
|
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
|
|
|
|
return outputs
|
|
|
|
def forward(
|
|
self,
|
|
input_values,
|
|
attention_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
labels=None,
|
|
):
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
outputs = self.wav2vec2(
|
|
input_values,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = outputs[0]
|
|
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
|
|
logits = self.classifier(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SpeechClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
class HubertClassificationHead(nn.Module):
|
|
"""Head for hubert classification task."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.dropout = nn.Dropout(config.final_dropout)
|
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
def forward(self, features, **kwargs):
|
|
x = features
|
|
x = self.dropout(x)
|
|
x = self.dense(x)
|
|
x = torch.tanh(x)
|
|
x = self.dropout(x)
|
|
x = self.out_proj(x)
|
|
return x
|
|
|
|
|
|
class HubertForSpeechClassification(HubertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.pooling_mode = config.pooling_mode
|
|
self.config = config
|
|
|
|
self.hubert = HubertModel(config)
|
|
self.classifier = HubertClassificationHead(config)
|
|
|
|
self.init_weights()
|
|
|
|
def freeze_feature_extractor(self): self.hubert.feature_extractor._freeze_parameters()
|
|
|
|
def merged_strategy(
|
|
self,
|
|
hidden_states,
|
|
mode="mean"):
|
|
if mode == "mean":
|
|
outputs = torch.mean(hidden_states, dim=1)
|
|
elif mode == "sum":
|
|
outputs = torch.sum(hidden_states, dim=1)
|
|
elif mode == "max":
|
|
outputs = torch.max(hidden_states, dim=1)[0]
|
|
else:
|
|
raise Exception(
|
|
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
|
|
|
|
return outputs
|
|
|
|
def forward(
|
|
self,
|
|
input_values,
|
|
attention_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
labels=None,
|
|
):
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
outputs = self.hubert(
|
|
input_values,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = outputs[0]
|
|
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
|
|
logits = self.classifier(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SpeechClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|