File size: 5,484 Bytes
5b06045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import urllib.request
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
import huggingface_hub
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time
import transformers
import requests
import globals
from utility import *

"""set up"""
huggingface_hub.login(token=globals.HF_TOKEN)
gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL)
gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL)

falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload")
falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True,
                                                    torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload")

def get_model(model_typ):
  if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]:
    raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".')
  if model_typ=="gemma":
    tokenizer = gemma_tokenizer
    model = gemma_model
    prefix = globals.gemma_PREFIX
  elif model_typ=="falcon_api":
    prefix = globals.falcon_PREFIX
    model=None
    tokenizer = None
  elif model_typ=="falcon":
    tokenizer = falcon_tokenizer
    model = falcon_model
    prefix = globals.falcon_PREFIX
  elif model_typ in ["simplet5_base","simplet5_large"]:
    prefix = globals.simplet5_PREFIX
    URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL
    T5_MODEL_PATH = f"https://huggingface.co/{URL}/resolve/main/{globals.T5_FILE_NAME}"
    fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME)
    tokenizer = T5Tokenizer.from_pretrained(URL)
    model = T5ForConditionalGeneration.from_pretrained(URL)
  return model, tokenizer, prefix

def topk_query(model_typ="gemma",prompt="She has a heart of gold",temperature=0.7,max_length=256):
  if model_typ not in ["gemma","simplet5_base", "simplet5_large"]:
    raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".')
  model, tokenizer, prefix = get_model(model_typ)

  start_time = time.time()
  input = prefix.replace("{fig}", prompt)
  print(f"Input to model: \n{input}")

  if model_typ in ["simplet5_base", "simplet5_large"]:
    inputs = tokenizer(input, return_tensors="pt")
    outputs = model.generate(
        inputs["input_ids"],
        temperature=temperature,
        max_length=max_length,
        num_beams=5,
        num_return_sequences=5,  # Generate 5 responses
        early_stopping=True
    )

    response = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
    answer = [response.replace(input, "").strip() for response in response]

  elif model_typ=="gemma":
    inputs = tokenizer(input, return_tensors="pt")
    generate_ids = gemma_model.generate(
        inputs.input_ids,
        max_length=max_length,
        do_sample=True,
        top_k=50,
        temperature=temperature,
        num_return_sequences=5,
        eos_token_id=gemma_tokenizer.eos_token_id
    )
    outputs = gemma_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    print(f"Model original output:{outputs}\n")
    answer = [post_process(output,input).replace("\n", "") for output in outputs]

  # TODO: falcon's outputs dont have much differences, not used in topk response
  # elif model_typ=="falcon_api":
  #   API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
  #   headers = {"Authorization": f"Bearer {access_token}"}
  #   response = api_query(API_URL=API_URL, headers=headers, payload={
  #       "inputs": input,
  #       "parameters": {
  #           "temperature": temperature,
  #           "top_k": 50,
  #           "num_return_sequences": 5
  #       }
  #   })
  #   print(response)
  #   answer = [post_process(item["generated_text"], input) for item in response]
  else:
    raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".')

  print(f"Time taken: {time.time()-start_time:.2f} seconds")
  print(f"processed model output: {answer}")

  return answer

topk_iface = gr.Interface(
    fn=topk_query,
    inputs=[
        gr.Dropdown(
            choices=["gemma", "simplet5_base", "simplet5_large"],
            label="Model Type",
            value="gemma"
        ),
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here"),
        gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature"),
        gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length")
    ],
    outputs=[
        gr.Textbox(label="Response 1"),
        gr.Textbox(label="Response 2"),
        gr.Textbox(label="Response 3"),
        gr.Textbox(label="Response 4"),
        gr.Textbox(label="Response 5")
    ],theme=gr.themes.Soft(),
    title=globals.TITLE,
    description="Generate multiple responses (top 5) based on input sentence, prefix, and temperature. Literal meanings/explanations are provided based on the input figurative sentence.",
    examples=[
           ["gemma", "Time flies when you're having fun",0.7],
           ["simplet5_large", "She has a heart of gold",0.5],
        ["gemma", "The sky is the limit",0.6]
    ]
)
if __name__ == '__main__':
  topk_iface.launch()