Angelawork commited on
Commit
5b06045
·
1 Parent(s): 51e6078

main app for topk responses API

Browse files
Files changed (2) hide show
  1. app.py +136 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import urllib.request
3
+ import gradio as gr
4
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
5
+ import huggingface_hub
6
+ import re
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM
8
+ import torch
9
+ import time
10
+ import transformers
11
+ import requests
12
+ import globals
13
+ from utility import *
14
+
15
+ """set up"""
16
+ huggingface_hub.login(token=globals.HF_TOKEN)
17
+ gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL)
18
+ gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL)
19
+
20
+ falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload")
21
+ falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True,
22
+ torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload")
23
+
24
+ def get_model(model_typ):
25
+ if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]:
26
+ raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".')
27
+ if model_typ=="gemma":
28
+ tokenizer = gemma_tokenizer
29
+ model = gemma_model
30
+ prefix = globals.gemma_PREFIX
31
+ elif model_typ=="falcon_api":
32
+ prefix = globals.falcon_PREFIX
33
+ model=None
34
+ tokenizer = None
35
+ elif model_typ=="falcon":
36
+ tokenizer = falcon_tokenizer
37
+ model = falcon_model
38
+ prefix = globals.falcon_PREFIX
39
+ elif model_typ in ["simplet5_base","simplet5_large"]:
40
+ prefix = globals.simplet5_PREFIX
41
+ URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL
42
+ T5_MODEL_PATH = f"https://huggingface.co/{URL}/resolve/main/{globals.T5_FILE_NAME}"
43
+ fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME)
44
+ tokenizer = T5Tokenizer.from_pretrained(URL)
45
+ model = T5ForConditionalGeneration.from_pretrained(URL)
46
+ return model, tokenizer, prefix
47
+
48
+ def topk_query(model_typ="gemma",prompt="She has a heart of gold",temperature=0.7,max_length=256):
49
+ if model_typ not in ["gemma","simplet5_base", "simplet5_large"]:
50
+ raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".')
51
+ model, tokenizer, prefix = get_model(model_typ)
52
+
53
+ start_time = time.time()
54
+ input = prefix.replace("{fig}", prompt)
55
+ print(f"Input to model: \n{input}")
56
+
57
+ if model_typ in ["simplet5_base", "simplet5_large"]:
58
+ inputs = tokenizer(input, return_tensors="pt")
59
+ outputs = model.generate(
60
+ inputs["input_ids"],
61
+ temperature=temperature,
62
+ max_length=max_length,
63
+ num_beams=5,
64
+ num_return_sequences=5, # Generate 5 responses
65
+ early_stopping=True
66
+ )
67
+
68
+ response = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
69
+ answer = [response.replace(input, "").strip() for response in response]
70
+
71
+ elif model_typ=="gemma":
72
+ inputs = tokenizer(input, return_tensors="pt")
73
+ generate_ids = gemma_model.generate(
74
+ inputs.input_ids,
75
+ max_length=max_length,
76
+ do_sample=True,
77
+ top_k=50,
78
+ temperature=temperature,
79
+ num_return_sequences=5,
80
+ eos_token_id=gemma_tokenizer.eos_token_id
81
+ )
82
+ outputs = gemma_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
83
+ print(f"Model original output:{outputs}\n")
84
+ answer = [post_process(output,input).replace("\n", "") for output in outputs]
85
+
86
+ # TODO: falcon's outputs dont have much differences, not used in topk response
87
+ # elif model_typ=="falcon_api":
88
+ # API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
89
+ # headers = {"Authorization": f"Bearer {access_token}"}
90
+ # response = api_query(API_URL=API_URL, headers=headers, payload={
91
+ # "inputs": input,
92
+ # "parameters": {
93
+ # "temperature": temperature,
94
+ # "top_k": 50,
95
+ # "num_return_sequences": 5
96
+ # }
97
+ # })
98
+ # print(response)
99
+ # answer = [post_process(item["generated_text"], input) for item in response]
100
+ else:
101
+ raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".')
102
+
103
+ print(f"Time taken: {time.time()-start_time:.2f} seconds")
104
+ print(f"processed model output: {answer}")
105
+
106
+ return answer
107
+
108
+ topk_iface = gr.Interface(
109
+ fn=topk_query,
110
+ inputs=[
111
+ gr.Dropdown(
112
+ choices=["gemma", "simplet5_base", "simplet5_large"],
113
+ label="Model Type",
114
+ value="gemma"
115
+ ),
116
+ gr.Textbox(label="Prompt", placeholder="Enter your prompt here"),
117
+ gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature"),
118
+ gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length")
119
+ ],
120
+ outputs=[
121
+ gr.Textbox(label="Response 1"),
122
+ gr.Textbox(label="Response 2"),
123
+ gr.Textbox(label="Response 3"),
124
+ gr.Textbox(label="Response 4"),
125
+ gr.Textbox(label="Response 5")
126
+ ],theme=gr.themes.Soft(),
127
+ title=globals.TITLE,
128
+ description="Generate multiple responses (top 5) based on input sentence, prefix, and temperature. Literal meanings/explanations are provided based on the input figurative sentence.",
129
+ examples=[
130
+ ["gemma", "Time flies when you're having fun",0.7],
131
+ ["simplet5_large", "She has a heart of gold",0.5],
132
+ ["gemma", "The sky is the limit",0.6]
133
+ ]
134
+ )
135
+ if __name__ == '__main__':
136
+ topk_iface.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ huggingface_hub>=0.23.2
2
+ llama-cpp-python==0.1.62
3
+ transformers==4.42.4
4
+ sentence_transformers
5
+ sentencepiece
6
+ accelerate==0.32.1
7
+ bitsandbytes==0.43.3