animatedaliensfans's picture
Update app.py
05c2acb verified
import gradio as gr
def greet(name):
return "Hello " + name + "!!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()
import os
from moviepy.editor import VideoFileClip, concatenate_videoclips
from transformers import VideoProcessor, VideoModel # Replace with actual imports if needed
# Function to load the Hugging Face model and processor
def load_model(model_name):
try:
model = VideoModel.from_pretrained(model_name)
processor = VideoProcessor.from_pretrained(model_name)
return model, processor
except Exception as e:
print(f"Error loading model: {e}")
return None, None
# Function to generate the crossover video
def generate_crossover_video(video1_path, video2_path, output_path):
if not os.path.isfile(video1_path):
print(f"Error: {video1_path} does not exist.")
return
print(f"Processing Video 1: {video1_path}")
if not os.path.isfile(video2_path):
print(f"Error: {video2_path} does not exist.")
return
print(f"Processing Video 2: {video2_path}")
# Load video clips
clip1 = VideoFileClip(video1_path)
clip2 = VideoFileClip(video2_path)
# For now, just concatenating the clips directly
final_clip = concatenate_videoclips([clip1, clip2])
# Write the output video file
final_clip.write_videofile(output_path, codec='libx264')
print(f"Crossover video saved to {output_path}")
def main():
video1_path = input("Enter the path to the first video: ")
video2_path = input("Enter the path to the second video: ")
output_path = input("Enter the output file path (e.g., crossover_output.mp4): ")
model_name = "your_model_name" # Replace with the actual model name you want to use
model, processor = load_model(model_name)
if model is None or processor is None:
print("Model loading failed. Exiting the application.")
return
generate_crossover_video(video1_path, video2_path, output_path)
if __name__ == "__main__":
main()