anjikum's picture
Upload 2 files
503d665 verified
raw
history blame
13.8 kB
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import numpy as np
from huggingface_hub import HfApi, Repository
import gradio as gr
from tqdm import tqdm
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -self.config.block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
def forward(self, idx, targets=None):
# idx is of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and posisition embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
# model = GPT.from_pretrained('gpt2')
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
# SEED
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
# STOP
num_return_sequences = 5
max_length = 30
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
# at init load tokens from disk and store them in memory
with open('/content/drive/My Drive/ERAV3/Assign12/input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded {len(self.tokens)} tokens')
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
# state
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
x = (buf[:-1]).view(B, T) # inputs
y = (buf[1:]).view(B, T) # targets
# advance the position in the tensor
self.current_position += B*T
# if loading the next batch would be out of bounds, reset
if self.current_position + (B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
model = GPT(GPTConfig())
model.to(device)
train_loader = DataLoaderLite(B = 4, T = 32)
# Calculate number of epochs
total_tokens = len(train_loader.tokens)
batches_per_epoch = total_tokens // (4 * 32)
total_epochs = 5000 / batches_per_epoch
print(f'\nTraining for approximately {total_epochs:.2f} epochs')
print(f'Total tokens: {total_tokens:,}')
print(f'Batches per epoch: {batches_per_epoch}')
print(f'Total steps: 5,000\n')
# Continue with training loop
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
# Calculate total epochs and steps per epoch
total_steps = 5000
steps_per_epoch = batches_per_epoch
num_epochs = total_steps // steps_per_epoch
remaining_steps = total_steps % steps_per_epoch
print(f"Training for {num_epochs} full epochs plus {remaining_steps} steps")
print(f"Steps per epoch: {steps_per_epoch}\n")
step = 0
for epoch in range(num_epochs + 1):
# Determine steps for this epoch
if epoch == num_epochs:
if remaining_steps == 0:
break
current_steps = remaining_steps
else:
current_steps = steps_per_epoch
print(f"\nEpoch {epoch+1}/{num_epochs + (1 if remaining_steps > 0 else 0)}")
epoch_loss = 0
# Use tqdm for progress bar
pbar = tqdm(range(current_steps), desc=f'Training',
leave=True, ncols=100)
for i in pbar:
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
logits, loss = model(x, y)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
step += 1
# Update progress bar description with current loss
pbar.set_description(f'Loss: {loss.item():.4f}')
# Print epoch summary
avg_epoch_loss = epoch_loss / current_steps
print(f'\nEpoch {epoch+1} completed. Average Loss: {avg_epoch_loss:.4f}')
print(f'Total steps completed: {step}/{total_steps}')
# For even smaller file size, quantize the model to 8-bit
model_save_path = '/content/drive/My Drive/ERAV3/Assign12/gpt_model_quantized.pt'
try:
# Quantize weights to 8-bit
state_dict = model.state_dict()
quantized_dict = {}
for key, param in state_dict.items():
if param.dtype == torch.float32 or param.dtype == torch.float16:
# Quantize to 8-bit
param_np = param.cpu().numpy()
scale = np.max(np.abs(param_np)) / 127
quantized = np.round(param_np / scale).astype(np.int8)
quantized_dict[key] = {
'data': quantized,
'scale': scale
}
else:
quantized_dict[key] = param
# Save quantized weights
torch.save(quantized_dict, model_save_path)
print(f'\nQuantized model saved successfully to {model_save_path}')
except Exception as e:
print(f'\nError saving model: {e}')
# To load the quantized model:
# def dequantize_model(model, quantized_dict):
# state_dict = {}
# for key, value in quantized_dict.items():
# if isinstance(value, dict):
# # Dequantize
# state_dict[key] = torch.tensor(
# value['data'].astype(np.float32) * value['scale']
# )
# else:
# state_dict[key] = value
# model.load_state_dict(state_dict)
# return model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
enc = tiktoken.get_encoding('gpt2')
print(enc.decode(model.generate(context, max_new_tokens=500)[0].tolist()))