|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from dataclasses import dataclass
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
block_size: int = 1024
|
|
vocab_size: int = 50257
|
|
n_layer: int = 12
|
|
n_head: int = 12
|
|
n_embd: int = 768
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
|
self.c_proj.NANGPT_SCALE_INIT = 1
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
qkv = self.c_attn(x)
|
|
q, k, v = qkv.split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
|
att = F.softmax(att, dim=-1)
|
|
y = att @ v
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
y = self.c_proj(y)
|
|
return y
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
|
self.gelu = nn.GELU(approximate='tanh')
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
|
self.c_proj.NANOGPT_SCALE_INIT = 1
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
class GPT(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = nn.LayerNorm(config.n_embd),
|
|
))
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
std = 0.02
|
|
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
|
std *= (2 * self.config.n_layer) ** -0.5
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, idx, targets=None):
|
|
B, T = idx.size()
|
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
tok_emb = self.transformer.wte(idx)
|
|
x = tok_emb + pos_emb
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
x = self.transformer.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
loss = None
|
|
if targets is not None:
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
|
return logits, loss
|
|
|
|
def generate(self, idx, max_new_tokens):
|
|
for _ in range(max_new_tokens):
|
|
idx_cond = idx[:, -self.config.block_size:]
|
|
logits, _ = self(idx_cond)
|
|
logits = logits[:, -1, :]
|
|
probs = F.softmax(logits, dim=-1)
|
|
idx_next = torch.multinomial(probs, num_samples=1)
|
|
idx = torch.cat((idx, idx_next), dim=1)
|
|
return idx |