anjikum commited on
Commit
59fc6f3
·
verified ·
1 Parent(s): 503d665

Upload 3 files

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. model.py +119 -0
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import torch
3
  import tiktoken
4
  import numpy as np
5
- from train import GPT, GPTConfig # Make sure to upload train.py to the Space
6
 
7
  def load_quantized_model():
8
  model = GPT(GPTConfig())
 
2
  import torch
3
  import tiktoken
4
  import numpy as np
5
+ from model import GPT, GPTConfig # Changed from train to model
6
 
7
  def load_quantized_model():
8
  model = GPT(GPTConfig())
model.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import functional as F
5
+ from dataclasses import dataclass
6
+
7
+ @dataclass
8
+ class GPTConfig:
9
+ block_size: int = 1024
10
+ vocab_size: int = 50257
11
+ n_layer: int = 12
12
+ n_head: int = 12
13
+ n_embd: int = 768
14
+
15
+ class CausalSelfAttention(nn.Module):
16
+ def __init__(self, config):
17
+ super().__init__()
18
+ assert config.n_embd % config.n_head == 0
19
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
20
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
21
+ self.c_proj.NANGPT_SCALE_INIT = 1
22
+ self.n_head = config.n_head
23
+ self.n_embd = config.n_embd
24
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
25
+
26
+ def forward(self, x):
27
+ B, T, C = x.size()
28
+ qkv = self.c_attn(x)
29
+ q, k, v = qkv.split(self.n_embd, dim=2)
30
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
31
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
32
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
33
+
34
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
35
+ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
36
+ att = F.softmax(att, dim=-1)
37
+ y = att @ v
38
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
39
+ y = self.c_proj(y)
40
+ return y
41
+
42
+ class MLP(nn.Module):
43
+ def __init__(self, config):
44
+ super().__init__()
45
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
46
+ self.gelu = nn.GELU(approximate='tanh')
47
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
48
+ self.c_proj.NANOGPT_SCALE_INIT = 1
49
+
50
+ def forward(self, x):
51
+ x = self.c_fc(x)
52
+ x = self.gelu(x)
53
+ x = self.c_proj(x)
54
+ return x
55
+
56
+ class Block(nn.Module):
57
+ def __init__(self, config):
58
+ super().__init__()
59
+ self.ln_1 = nn.LayerNorm(config.n_embd)
60
+ self.attn = CausalSelfAttention(config)
61
+ self.ln_2 = nn.LayerNorm(config.n_embd)
62
+ self.mlp = MLP(config)
63
+
64
+ def forward(self, x):
65
+ x = x + self.attn(self.ln_1(x))
66
+ x = x + self.mlp(self.ln_2(x))
67
+ return x
68
+
69
+ class GPT(nn.Module):
70
+ def __init__(self, config):
71
+ super().__init__()
72
+ self.config = config
73
+
74
+ self.transformer = nn.ModuleDict(dict(
75
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
76
+ wpe = nn.Embedding(config.block_size, config.n_embd),
77
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
78
+ ln_f = nn.LayerNorm(config.n_embd),
79
+ ))
80
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
81
+ self.transformer.wte.weight = self.lm_head.weight
82
+ self.apply(self._init_weights)
83
+
84
+ def _init_weights(self, module):
85
+ if isinstance(module, nn.Linear):
86
+ std = 0.02
87
+ if hasattr(module, 'NANGPT_SCALE_INIT'):
88
+ std *= (2 * self.config.n_layer) ** -0.5
89
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
90
+ if module.bias is not None:
91
+ torch.nn.init.zeros_(module.bias)
92
+ elif isinstance(module, nn.Embedding):
93
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
94
+
95
+ def forward(self, idx, targets=None):
96
+ B, T = idx.size()
97
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
98
+ pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
99
+ pos_emb = self.transformer.wpe(pos)
100
+ tok_emb = self.transformer.wte(idx)
101
+ x = tok_emb + pos_emb
102
+ for block in self.transformer.h:
103
+ x = block(x)
104
+ x = self.transformer.ln_f(x)
105
+ logits = self.lm_head(x)
106
+ loss = None
107
+ if targets is not None:
108
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
109
+ return logits, loss
110
+
111
+ def generate(self, idx, max_new_tokens):
112
+ for _ in range(max_new_tokens):
113
+ idx_cond = idx[:, -self.config.block_size:]
114
+ logits, _ = self(idx_cond)
115
+ logits = logits[:, -1, :]
116
+ probs = F.softmax(logits, dim=-1)
117
+ idx_next = torch.multinomial(probs, num_samples=1)
118
+ idx = torch.cat((idx, idx_next), dim=1)
119
+ return idx