|
import os |
|
import math |
|
import time |
|
import inspect |
|
from dataclasses import dataclass |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import tiktoken |
|
import numpy as np |
|
from huggingface_hub import HfApi, Repository |
|
import gradio as gr |
|
from tqdm import tqdm |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
self.c_proj.NANGPT_SCALE_INIT = 1 |
|
|
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
|
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
y = att @ v |
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
y = self.c_proj(y) |
|
return y |
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) |
|
self.gelu = nn.GELU(approximate='tanh') |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
@dataclass |
|
class GPTConfig: |
|
block_size: int = 1024 |
|
vocab_size: int = 50257 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
|
|
|
|
class GPT(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = nn.LayerNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def generate(self, idx, max_new_tokens): |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx[:, -self.config.block_size:] |
|
|
|
logits, loss = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
return idx |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.02 |
|
if hasattr(module, 'NANGPT_SCALE_INIT'): |
|
std *= (2 * self.config.n_layer) ** -0.5 |
|
torch.nn.init.normal_(module.weight, mean = 0.0, std = std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) |
|
|
|
|
|
|
|
def forward(self, idx, targets=None): |
|
|
|
B, T = idx.size() |
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" |
|
|
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
pos_emb = self.transformer.wpe(pos) |
|
tok_emb = self.transformer.wte(idx) |
|
x = tok_emb + pos_emb |
|
|
|
for block in self.transformer.h: |
|
x = block(x) |
|
|
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
return logits, loss |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type): |
|
"""Loads pretrained GPT-2 model weights from huggingface""" |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
from transformers import GPT2LMHeadModel |
|
print("loading weights from pretrained gpt: %s" % model_type) |
|
|
|
|
|
config_args = { |
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), |
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), |
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), |
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), |
|
}[model_type] |
|
config_args['vocab_size'] = 50257 |
|
config_args['block_size'] = 1024 |
|
|
|
config = GPTConfig(**config_args) |
|
model = GPT(config) |
|
sd = model.state_dict() |
|
sd_keys = sd.keys() |
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
sd_keys_hf = sd_hf.keys() |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" |
|
for k in sd_keys_hf: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
return model |
|
|
|
|
|
|
|
device = 'cpu' |
|
if torch.cuda.is_available(): |
|
device = 'cuda' |
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): |
|
device = "mps" |
|
print(f"using device: {device}") |
|
|
|
|
|
torch.manual_seed(1337) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(1337) |
|
|
|
|
|
num_return_sequences = 5 |
|
max_length = 30 |
|
|
|
|
|
class DataLoaderLite: |
|
def __init__(self, B, T): |
|
self.B = B |
|
self.T = T |
|
|
|
|
|
with open('/content/drive/My Drive/ERAV3/Assign12/input.txt', 'r') as f: |
|
text = f.read() |
|
enc = tiktoken.get_encoding('gpt2') |
|
tokens = enc.encode(text) |
|
self.tokens = torch.tensor(tokens) |
|
print(f'loaded {len(self.tokens)} tokens') |
|
print(f'1 epoch = {len(self.tokens) // (B * T)} batches') |
|
|
|
|
|
self.current_position = 0 |
|
|
|
def next_batch(self): |
|
B, T = self.B, self.T |
|
buf = self.tokens[self.current_position: self.current_position + B * T + 1] |
|
x = (buf[:-1]).view(B, T) |
|
y = (buf[1:]).view(B, T) |
|
|
|
self.current_position += B*T |
|
|
|
if self.current_position + (B * T + 1) > len(self.tokens): |
|
self.current_position = 0 |
|
return x, y |
|
|
|
|
|
model = GPT(GPTConfig()) |
|
model.to(device) |
|
|
|
train_loader = DataLoaderLite(B = 4, T = 32) |
|
|
|
|
|
total_tokens = len(train_loader.tokens) |
|
batches_per_epoch = total_tokens // (4 * 32) |
|
total_epochs = 5000 / batches_per_epoch |
|
print(f'\nTraining for approximately {total_epochs:.2f} epochs') |
|
print(f'Total tokens: {total_tokens:,}') |
|
print(f'Batches per epoch: {batches_per_epoch}') |
|
print(f'Total steps: 5,000\n') |
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4) |
|
|
|
|
|
total_steps = 5000 |
|
steps_per_epoch = batches_per_epoch |
|
num_epochs = total_steps // steps_per_epoch |
|
remaining_steps = total_steps % steps_per_epoch |
|
|
|
print(f"Training for {num_epochs} full epochs plus {remaining_steps} steps") |
|
print(f"Steps per epoch: {steps_per_epoch}\n") |
|
|
|
step = 0 |
|
for epoch in range(num_epochs + 1): |
|
|
|
if epoch == num_epochs: |
|
if remaining_steps == 0: |
|
break |
|
current_steps = remaining_steps |
|
else: |
|
current_steps = steps_per_epoch |
|
|
|
print(f"\nEpoch {epoch+1}/{num_epochs + (1 if remaining_steps > 0 else 0)}") |
|
epoch_loss = 0 |
|
|
|
|
|
pbar = tqdm(range(current_steps), desc=f'Training', |
|
leave=True, ncols=100) |
|
|
|
for i in pbar: |
|
x, y = train_loader.next_batch() |
|
x, y = x.to(device), y.to(device) |
|
|
|
optimizer.zero_grad() |
|
logits, loss = model(x, y) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
epoch_loss += loss.item() |
|
step += 1 |
|
|
|
|
|
pbar.set_description(f'Loss: {loss.item():.4f}') |
|
|
|
|
|
avg_epoch_loss = epoch_loss / current_steps |
|
print(f'\nEpoch {epoch+1} completed. Average Loss: {avg_epoch_loss:.4f}') |
|
print(f'Total steps completed: {step}/{total_steps}') |
|
|
|
|
|
model_save_path = '/content/drive/My Drive/ERAV3/Assign12/gpt_model_quantized.pt' |
|
try: |
|
|
|
state_dict = model.state_dict() |
|
quantized_dict = {} |
|
|
|
for key, param in state_dict.items(): |
|
if param.dtype == torch.float32 or param.dtype == torch.float16: |
|
|
|
param_np = param.cpu().numpy() |
|
scale = np.max(np.abs(param_np)) / 127 |
|
quantized = np.round(param_np / scale).astype(np.int8) |
|
quantized_dict[key] = { |
|
'data': quantized, |
|
'scale': scale |
|
} |
|
else: |
|
quantized_dict[key] = param |
|
|
|
|
|
torch.save(quantized_dict, model_save_path) |
|
print(f'\nQuantized model saved successfully to {model_save_path}') |
|
except Exception as e: |
|
print(f'\nError saving model: {e}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
context = torch.zeros((1, 1), dtype=torch.long, device=device) |
|
enc = tiktoken.get_encoding('gpt2') |
|
print(enc.decode(model.generate(context, max_new_tokens=500)[0].tolist())) |
|
|