File size: 10,695 Bytes
c3fe4b2
2c7c575
 
 
 
c3fe4b2
 
16179bd
 
c3fe4b2
2c7c575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fe4b2
 
 
 
 
3241ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fe4b2
 
 
3499204
c3fe4b2
 
 
 
 
 
 
 
 
 
 
2c7c575
c3fe4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2391cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fe4b2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from dataclasses import dataclass
from transformers import AutoTokenizer
import gradio as gr
import zipfile
import io

# Copy all model classes here
class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, x):
        rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
        x_norm = x / rms
        return self.weight * x_norm

class LlamaRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.max_position_embeddings = max_position_embeddings
        self.dim = dim

    def forward(self, x, seq_len):
        t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        return emb

def rotate_half(x):
    x1, x2 = x[..., :x.shape[-1]//2], x[..., x.shape[-1]//2:]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    cos = cos.unsqueeze(0).unsqueeze(0)
    sin = sin.unsqueeze(0).unsqueeze(0)
    cos = cos.expand(q.shape[0], q.shape[1], -1, -1)
    sin = sin.expand(k.shape[0], k.shape[1], -1, -1)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

class LlamaSdpaAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.n_embd
        self.num_heads = config.n_head
        self.head_dim = config.n_embd // config.n_head
        self.num_key_value_heads = config.n_head // 3
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)

    def forward(self, x, attention_mask=None):
        B, T, C = x.size()
        q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim)
        k = self.k_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
        v = self.v_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)

        k = k.repeat_interleave(self.num_key_value_groups, dim=2)
        v = v.repeat_interleave(self.num_key_value_groups, dim=2)

        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        rotary_emb = self.rotary_emb(x, T)
        cos, sin = rotary_emb.cos(), rotary_emb.sin()
        q, k = apply_rotary_pos_emb(q, k, cos, sin, None)

        out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        out = out.transpose(1, 2).contiguous().view(B, T, C)
        return self.o_proj(out)

class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.gate_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
        self.up_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
        self.down_proj = nn.Linear(config.intermediate_size, config.n_embd, bias=False)
        self.act_fn = nn.SiLU()

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

class LlamaDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.input_layernorm = LlamaRMSNorm(config.n_embd)
        self.self_attn = LlamaSdpaAttention(config)
        self.post_attention_layernorm = LlamaRMSNorm(config.n_embd)
        self.mlp = LlamaMLP(config)

    def forward(self, x):
        residual = x
        x = self.input_layernorm(x)
        x = self.self_attn(x)
        x = residual + x

        residual = x
        x = self.post_attention_layernorm(x)
        x = self.mlp(x)
        x = residual + x
        return x

@dataclass
class SmolLM2Config:
    block_size: int = 2048
    vocab_size: int = 49152
    n_layer: int = 30
    n_head: int = 9
    n_embd: int = 576
    intermediate_size: int = 1536
    num_key_value_heads: int = 3
    rms_norm_eps: float = 1e-5
    rope_theta: float = 10000.0
    initializer_range: float = 0.041666666666666664
    use_cache: bool = True

class SmolLM2(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        
        self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.n_layer)])
        self.norm = LlamaRMSNorm(config.n_embd, eps=config.rms_norm_eps)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.embed_tokens.weight = self.lm_head.weight
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)

    def forward(self, idx, targets=None):
        B, T = idx.size()
        x = self.embed_tokens(idx)
        
        for layer in self.layers:
            x = layer(x)
            
        x = self.norm(x)
        logits = self.lm_head(x)

        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
            
        return logits, loss

    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = idx[:, -self.config.block_size:]
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = float('-inf')
                
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx

# Initialize model and tokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
model = SmolLM2(SmolLM2Config())

# Load trained weights from zip
def load_checkpoint_from_zip(zip_path, device):
    try:
        with zipfile.ZipFile(zip_path, 'r') as zf:
            with zf.open('checkpoint.pt') as f:
                buffer = io.BytesIO(f.read())
                checkpoint = torch.load(buffer, map_location=device)
                if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
                    return checkpoint['model_state_dict']
                return checkpoint
    except Exception as e:
        print(f"Error loading checkpoint: {e}")
        return None

# Try to load the checkpoint
try:
    checkpoint_path = 'checkpoint_step_5000.zip'  # or .pt file
    if checkpoint_path.endswith('.zip'):
        state_dict = load_checkpoint_from_zip(checkpoint_path, device)
    else:
        checkpoint = torch.load(checkpoint_path, map_location=device)
        state_dict = checkpoint['model_state_dict'] if isinstance(checkpoint, dict) else checkpoint
    
    if state_dict is not None:
        model.load_state_dict(state_dict)
        print("Checkpoint loaded successfully")
except Exception as e:
    print(f"Error loading checkpoint: {e}")
    print("Initializing model with random weights")

model.to(device)
model.eval()

def generate_text(prompt, max_length=20, temperature=0.7, top_k=50):
    """Generate text from a prompt"""
    input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
    
    with torch.no_grad():
        output_ids = model.generate(
            input_ids,
            max_new_tokens=max_length,
            temperature=temperature,
            top_k=top_k
        )
    
    return tokenizer.decode(output_ids[0], skip_special_tokens=True)

# Gradio interface
def gradio_interface(prompt, max_length, temperature, top_k):
    return generate_text(prompt, int(max_length), float(temperature), int(top_k))

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
        gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="SmolLM2 Text Generation",
    description="Generate Shakespeare-style text using the SmolLM2 model",
    examples=[
        ["To be, or not to be:", 50, 0.7, 50],
        ["O Romeo, Romeo,", 40, 0.8, 40],
        ["All the world's a stage,", 60, 0.9, 45],
        ["Friends, Romans, countrymen,", 45, 0.7, 50],
        ["Now is the winter of", 55, 0.8, 40],
        ["If music be the food of love,", 50, 0.9, 45],
    ],
    article="""

    ### Example Prompts:

    

    1. **Hamlet's Soliloquy Style**:

       - "To be, or not to be:"

       - "What dreams may come when"

    

    2. **Romeo and Juliet Style**:

       - "O Romeo, Romeo,"

       - "But soft, what light"

    

    3. **Macbeth Style**:

       - "Double, double toil and"

       - "Is this a dagger which"

    

    4. **Sonnets Style**:

       - "Shall I compare thee to"

       - "When in disgrace with fortune"

    

    ### Tips:

    - Use higher temperature (0.8-0.9) for more creative outputs

    - Use lower temperature (0.6-0.7) for more focused text

    - Adjust max length based on your needs (20-100 tokens)

    """
)

if __name__ == "__main__":
    iface.launch()