anjikum's picture
Upload app.py
2391cc3 verified
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from dataclasses import dataclass
from transformers import AutoTokenizer
import gradio as gr
import zipfile
import io
# Copy all model classes here
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x):
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
x_norm = x / rms
return self.weight * x_norm
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_position_embeddings = max_position_embeddings
self.dim = dim
def forward(self, x, seq_len):
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return emb
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1]//2], x[..., x.shape[-1]//2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
cos = cos.unsqueeze(0).unsqueeze(0)
sin = sin.unsqueeze(0).unsqueeze(0)
cos = cos.expand(q.shape[0], q.shape[1], -1, -1)
sin = sin.expand(k.shape[0], k.shape[1], -1, -1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaSdpaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.n_embd
self.num_heads = config.n_head
self.head_dim = config.n_embd // config.n_head
self.num_key_value_heads = config.n_head // 3
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
def forward(self, x, attention_mask=None):
B, T, C = x.size()
q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim)
k = self.k_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
v = self.v_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
k = k.repeat_interleave(self.num_key_value_groups, dim=2)
v = v.repeat_interleave(self.num_key_value_groups, dim=2)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
rotary_emb = self.rotary_emb(x, T)
cos, sin = rotary_emb.cos(), rotary_emb.sin()
q, k = apply_rotary_pos_emb(q, k, cos, sin, None)
out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.o_proj(out)
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.n_embd, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.input_layernorm = LlamaRMSNorm(config.n_embd)
self.self_attn = LlamaSdpaAttention(config)
self.post_attention_layernorm = LlamaRMSNorm(config.n_embd)
self.mlp = LlamaMLP(config)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = residual + x
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = residual + x
return x
@dataclass
class SmolLM2Config:
block_size: int = 2048
vocab_size: int = 49152
n_layer: int = 30
n_head: int = 9
n_embd: int = 576
intermediate_size: int = 1536
num_key_value_heads: int = 3
rms_norm_eps: float = 1e-5
rope_theta: float = 10000.0
initializer_range: float = 0.041666666666666664
use_cache: bool = True
class SmolLM2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.n_layer)])
self.norm = LlamaRMSNorm(config.n_embd, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.embed_tokens.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
def forward(self, idx, targets=None):
B, T = idx.size()
x = self.embed_tokens(idx)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = float('-inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# Initialize model and tokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
model = SmolLM2(SmolLM2Config())
# Load trained weights from zip
def load_checkpoint_from_zip(zip_path, device):
try:
with zipfile.ZipFile(zip_path, 'r') as zf:
with zf.open('checkpoint.pt') as f:
buffer = io.BytesIO(f.read())
checkpoint = torch.load(buffer, map_location=device)
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
return checkpoint['model_state_dict']
return checkpoint
except Exception as e:
print(f"Error loading checkpoint: {e}")
return None
# Try to load the checkpoint
try:
checkpoint_path = 'checkpoint_step_5000.zip' # or .pt file
if checkpoint_path.endswith('.zip'):
state_dict = load_checkpoint_from_zip(checkpoint_path, device)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)
state_dict = checkpoint['model_state_dict'] if isinstance(checkpoint, dict) else checkpoint
if state_dict is not None:
model.load_state_dict(state_dict)
print("Checkpoint loaded successfully")
except Exception as e:
print(f"Error loading checkpoint: {e}")
print("Initializing model with random weights")
model.to(device)
model.eval()
def generate_text(prompt, max_length=20, temperature=0.7, top_k=50):
"""Generate text from a prompt"""
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
with torch.no_grad():
output_ids = model.generate(
input_ids,
max_new_tokens=max_length,
temperature=temperature,
top_k=top_k
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Gradio interface
def gradio_interface(prompt, max_length, temperature, top_k):
return generate_text(prompt, int(max_length), float(temperature), int(top_k))
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text"),
title="SmolLM2 Text Generation",
description="Generate Shakespeare-style text using the SmolLM2 model",
examples=[
["To be, or not to be:", 50, 0.7, 50],
["O Romeo, Romeo,", 40, 0.8, 40],
["All the world's a stage,", 60, 0.9, 45],
["Friends, Romans, countrymen,", 45, 0.7, 50],
["Now is the winter of", 55, 0.8, 40],
["If music be the food of love,", 50, 0.9, 45],
],
article="""
### Example Prompts:
1. **Hamlet's Soliloquy Style**:
- "To be, or not to be:"
- "What dreams may come when"
2. **Romeo and Juliet Style**:
- "O Romeo, Romeo,"
- "But soft, what light"
3. **Macbeth Style**:
- "Double, double toil and"
- "Is this a dagger which"
4. **Sonnets Style**:
- "Shall I compare thee to"
- "When in disgrace with fortune"
### Tips:
- Use higher temperature (0.8-0.9) for more creative outputs
- Use lower temperature (0.6-0.7) for more focused text
- Adjust max length based on your needs (20-100 tokens)
"""
)
if __name__ == "__main__":
iface.launch()