Spaces:
Running
Running
import streamlit as st | |
from open_image_models import LicensePlateDetector | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
# Define the available models | |
PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end', | |
'yolo-v9-t-512-license-plate-end2end', | |
'yolo-v9-t-384-license-plate-end2end', | |
'yolo-v9-t-256-license-plate-end2end'] | |
# Streamlit interface | |
st.title("License Plate Detection with Open Image Models") | |
st.write("Select a model and upload an image to perform license plate detection.") | |
# Model selection dropdown | |
selected_model = st.selectbox("Select a License Plate Detection Model", PlateDetectorModel) | |
# File uploader for images | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg", "webp"]) | |
if uploaded_file is not None: | |
# Load the image | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
st.write("") | |
st.write("Detecting license plates...") | |
# Convert the image to an OpenCV format | |
image_np = np.array(image) | |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
# Initialize the License Plate Detector | |
lp_detector = LicensePlateDetector(detection_model=selected_model) | |
# Perform license plate detection | |
detections = lp_detector.predict(image_cv2) | |
# Display the detected plates | |
st.write(f"Detections: {detections}") | |
# Annotate and display the image with detected plates | |
annotated_image = lp_detector.display_predictions(image_cv2) | |
st.image(annotated_image, caption='Annotated Image with Detections', use_column_width=True) | |