|
name: "DENSENET_121" |
|
input: "data" |
|
input_dim: 1 |
|
input_dim: 3 |
|
input_dim: 224 |
|
input_dim: 224 |
|
layer { |
|
name: "conv1" |
|
type: "Convolution" |
|
bottom: "data" |
|
top: "conv1" |
|
convolution_param { |
|
num_output: 64 |
|
bias_term: false |
|
pad: 3 |
|
kernel_size: 7 |
|
stride: 2 |
|
} |
|
} |
|
layer { |
|
name: "conv1/bn" |
|
type: "BatchNorm" |
|
bottom: "conv1" |
|
top: "conv1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv1/scale" |
|
type: "Scale" |
|
bottom: "conv1/bn" |
|
top: "conv1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu1" |
|
type: "ReLU" |
|
bottom: "conv1/bn" |
|
top: "conv1/bn" |
|
} |
|
layer { |
|
name: "pool1" |
|
type: "Pooling" |
|
bottom: "conv1/bn" |
|
top: "pool1" |
|
pooling_param { |
|
pool: MAX |
|
kernel_size: 3 |
|
stride: 2 |
|
pad: 1 |
|
ceil_mode: false |
|
} |
|
} |
|
layer { |
|
name: "conv2_1/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "pool1" |
|
top: "conv2_1/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_1/x1/scale" |
|
type: "Scale" |
|
bottom: "conv2_1/x1/bn" |
|
top: "conv2_1/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_1/x1" |
|
type: "ReLU" |
|
bottom: "conv2_1/x1/bn" |
|
top: "conv2_1/x1/bn" |
|
} |
|
layer { |
|
name: "conv2_1/x1" |
|
type: "Convolution" |
|
bottom: "conv2_1/x1/bn" |
|
top: "conv2_1/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv2_1/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv2_1/x1" |
|
top: "conv2_1/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_1/x2/scale" |
|
type: "Scale" |
|
bottom: "conv2_1/x2/bn" |
|
top: "conv2_1/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_1/x2" |
|
type: "ReLU" |
|
bottom: "conv2_1/x2/bn" |
|
top: "conv2_1/x2/bn" |
|
} |
|
layer { |
|
name: "conv2_1/x2" |
|
type: "Convolution" |
|
bottom: "conv2_1/x2/bn" |
|
top: "conv2_1/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_2_1" |
|
type: "Concat" |
|
bottom: "pool1" |
|
bottom: "conv2_1/x2" |
|
top: "concat_2_1" |
|
} |
|
layer { |
|
name: "conv2_2/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_2_1" |
|
top: "conv2_2/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_2/x1/scale" |
|
type: "Scale" |
|
bottom: "conv2_2/x1/bn" |
|
top: "conv2_2/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_2/x1" |
|
type: "ReLU" |
|
bottom: "conv2_2/x1/bn" |
|
top: "conv2_2/x1/bn" |
|
} |
|
layer { |
|
name: "conv2_2/x1" |
|
type: "Convolution" |
|
bottom: "conv2_2/x1/bn" |
|
top: "conv2_2/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv2_2/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv2_2/x1" |
|
top: "conv2_2/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_2/x2/scale" |
|
type: "Scale" |
|
bottom: "conv2_2/x2/bn" |
|
top: "conv2_2/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_2/x2" |
|
type: "ReLU" |
|
bottom: "conv2_2/x2/bn" |
|
top: "conv2_2/x2/bn" |
|
} |
|
layer { |
|
name: "conv2_2/x2" |
|
type: "Convolution" |
|
bottom: "conv2_2/x2/bn" |
|
top: "conv2_2/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_2_2" |
|
type: "Concat" |
|
bottom: "concat_2_1" |
|
bottom: "conv2_2/x2" |
|
top: "concat_2_2" |
|
} |
|
layer { |
|
name: "conv2_3/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_2_2" |
|
top: "conv2_3/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_3/x1/scale" |
|
type: "Scale" |
|
bottom: "conv2_3/x1/bn" |
|
top: "conv2_3/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_3/x1" |
|
type: "ReLU" |
|
bottom: "conv2_3/x1/bn" |
|
top: "conv2_3/x1/bn" |
|
} |
|
layer { |
|
name: "conv2_3/x1" |
|
type: "Convolution" |
|
bottom: "conv2_3/x1/bn" |
|
top: "conv2_3/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv2_3/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv2_3/x1" |
|
top: "conv2_3/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_3/x2/scale" |
|
type: "Scale" |
|
bottom: "conv2_3/x2/bn" |
|
top: "conv2_3/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_3/x2" |
|
type: "ReLU" |
|
bottom: "conv2_3/x2/bn" |
|
top: "conv2_3/x2/bn" |
|
} |
|
layer { |
|
name: "conv2_3/x2" |
|
type: "Convolution" |
|
bottom: "conv2_3/x2/bn" |
|
top: "conv2_3/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_2_3" |
|
type: "Concat" |
|
bottom: "concat_2_2" |
|
bottom: "conv2_3/x2" |
|
top: "concat_2_3" |
|
} |
|
layer { |
|
name: "conv2_4/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_2_3" |
|
top: "conv2_4/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_4/x1/scale" |
|
type: "Scale" |
|
bottom: "conv2_4/x1/bn" |
|
top: "conv2_4/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_4/x1" |
|
type: "ReLU" |
|
bottom: "conv2_4/x1/bn" |
|
top: "conv2_4/x1/bn" |
|
} |
|
layer { |
|
name: "conv2_4/x1" |
|
type: "Convolution" |
|
bottom: "conv2_4/x1/bn" |
|
top: "conv2_4/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv2_4/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv2_4/x1" |
|
top: "conv2_4/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_4/x2/scale" |
|
type: "Scale" |
|
bottom: "conv2_4/x2/bn" |
|
top: "conv2_4/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_4/x2" |
|
type: "ReLU" |
|
bottom: "conv2_4/x2/bn" |
|
top: "conv2_4/x2/bn" |
|
} |
|
layer { |
|
name: "conv2_4/x2" |
|
type: "Convolution" |
|
bottom: "conv2_4/x2/bn" |
|
top: "conv2_4/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_2_4" |
|
type: "Concat" |
|
bottom: "concat_2_3" |
|
bottom: "conv2_4/x2" |
|
top: "concat_2_4" |
|
} |
|
layer { |
|
name: "conv2_5/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_2_4" |
|
top: "conv2_5/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_5/x1/scale" |
|
type: "Scale" |
|
bottom: "conv2_5/x1/bn" |
|
top: "conv2_5/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_5/x1" |
|
type: "ReLU" |
|
bottom: "conv2_5/x1/bn" |
|
top: "conv2_5/x1/bn" |
|
} |
|
layer { |
|
name: "conv2_5/x1" |
|
type: "Convolution" |
|
bottom: "conv2_5/x1/bn" |
|
top: "conv2_5/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv2_5/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv2_5/x1" |
|
top: "conv2_5/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_5/x2/scale" |
|
type: "Scale" |
|
bottom: "conv2_5/x2/bn" |
|
top: "conv2_5/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_5/x2" |
|
type: "ReLU" |
|
bottom: "conv2_5/x2/bn" |
|
top: "conv2_5/x2/bn" |
|
} |
|
layer { |
|
name: "conv2_5/x2" |
|
type: "Convolution" |
|
bottom: "conv2_5/x2/bn" |
|
top: "conv2_5/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_2_5" |
|
type: "Concat" |
|
bottom: "concat_2_4" |
|
bottom: "conv2_5/x2" |
|
top: "concat_2_5" |
|
} |
|
layer { |
|
name: "conv2_6/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_2_5" |
|
top: "conv2_6/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_6/x1/scale" |
|
type: "Scale" |
|
bottom: "conv2_6/x1/bn" |
|
top: "conv2_6/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_6/x1" |
|
type: "ReLU" |
|
bottom: "conv2_6/x1/bn" |
|
top: "conv2_6/x1/bn" |
|
} |
|
layer { |
|
name: "conv2_6/x1" |
|
type: "Convolution" |
|
bottom: "conv2_6/x1/bn" |
|
top: "conv2_6/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv2_6/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv2_6/x1" |
|
top: "conv2_6/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_6/x2/scale" |
|
type: "Scale" |
|
bottom: "conv2_6/x2/bn" |
|
top: "conv2_6/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_6/x2" |
|
type: "ReLU" |
|
bottom: "conv2_6/x2/bn" |
|
top: "conv2_6/x2/bn" |
|
} |
|
layer { |
|
name: "conv2_6/x2" |
|
type: "Convolution" |
|
bottom: "conv2_6/x2/bn" |
|
top: "conv2_6/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_2_6" |
|
type: "Concat" |
|
bottom: "concat_2_5" |
|
bottom: "conv2_6/x2" |
|
top: "concat_2_6" |
|
} |
|
layer { |
|
name: "conv2_blk/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_2_6" |
|
top: "conv2_blk/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv2_blk/scale" |
|
type: "Scale" |
|
bottom: "conv2_blk/bn" |
|
top: "conv2_blk/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu2_blk" |
|
type: "ReLU" |
|
bottom: "conv2_blk/bn" |
|
top: "conv2_blk/bn" |
|
} |
|
layer { |
|
name: "conv2_blk" |
|
type: "Convolution" |
|
bottom: "conv2_blk/bn" |
|
top: "conv2_blk" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "pool2" |
|
type: "Pooling" |
|
bottom: "conv2_blk" |
|
top: "pool2" |
|
pooling_param { |
|
pool: AVE |
|
kernel_size: 2 |
|
stride: 2 |
|
} |
|
} |
|
layer { |
|
name: "conv3_1/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "pool2" |
|
top: "conv3_1/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_1/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_1/x1/bn" |
|
top: "conv3_1/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_1/x1" |
|
type: "ReLU" |
|
bottom: "conv3_1/x1/bn" |
|
top: "conv3_1/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_1/x1" |
|
type: "Convolution" |
|
bottom: "conv3_1/x1/bn" |
|
top: "conv3_1/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_1/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_1/x1" |
|
top: "conv3_1/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_1/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_1/x2/bn" |
|
top: "conv3_1/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_1/x2" |
|
type: "ReLU" |
|
bottom: "conv3_1/x2/bn" |
|
top: "conv3_1/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_1/x2" |
|
type: "Convolution" |
|
bottom: "conv3_1/x2/bn" |
|
top: "conv3_1/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_1" |
|
type: "Concat" |
|
bottom: "pool2" |
|
bottom: "conv3_1/x2" |
|
top: "concat_3_1" |
|
} |
|
layer { |
|
name: "conv3_2/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_1" |
|
top: "conv3_2/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_2/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_2/x1/bn" |
|
top: "conv3_2/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_2/x1" |
|
type: "ReLU" |
|
bottom: "conv3_2/x1/bn" |
|
top: "conv3_2/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_2/x1" |
|
type: "Convolution" |
|
bottom: "conv3_2/x1/bn" |
|
top: "conv3_2/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_2/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_2/x1" |
|
top: "conv3_2/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_2/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_2/x2/bn" |
|
top: "conv3_2/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_2/x2" |
|
type: "ReLU" |
|
bottom: "conv3_2/x2/bn" |
|
top: "conv3_2/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_2/x2" |
|
type: "Convolution" |
|
bottom: "conv3_2/x2/bn" |
|
top: "conv3_2/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_2" |
|
type: "Concat" |
|
bottom: "concat_3_1" |
|
bottom: "conv3_2/x2" |
|
top: "concat_3_2" |
|
} |
|
layer { |
|
name: "conv3_3/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_2" |
|
top: "conv3_3/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_3/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_3/x1/bn" |
|
top: "conv3_3/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_3/x1" |
|
type: "ReLU" |
|
bottom: "conv3_3/x1/bn" |
|
top: "conv3_3/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_3/x1" |
|
type: "Convolution" |
|
bottom: "conv3_3/x1/bn" |
|
top: "conv3_3/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_3/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_3/x1" |
|
top: "conv3_3/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_3/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_3/x2/bn" |
|
top: "conv3_3/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_3/x2" |
|
type: "ReLU" |
|
bottom: "conv3_3/x2/bn" |
|
top: "conv3_3/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_3/x2" |
|
type: "Convolution" |
|
bottom: "conv3_3/x2/bn" |
|
top: "conv3_3/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_3" |
|
type: "Concat" |
|
bottom: "concat_3_2" |
|
bottom: "conv3_3/x2" |
|
top: "concat_3_3" |
|
} |
|
layer { |
|
name: "conv3_4/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_3" |
|
top: "conv3_4/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_4/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_4/x1/bn" |
|
top: "conv3_4/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_4/x1" |
|
type: "ReLU" |
|
bottom: "conv3_4/x1/bn" |
|
top: "conv3_4/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_4/x1" |
|
type: "Convolution" |
|
bottom: "conv3_4/x1/bn" |
|
top: "conv3_4/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_4/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_4/x1" |
|
top: "conv3_4/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_4/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_4/x2/bn" |
|
top: "conv3_4/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_4/x2" |
|
type: "ReLU" |
|
bottom: "conv3_4/x2/bn" |
|
top: "conv3_4/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_4/x2" |
|
type: "Convolution" |
|
bottom: "conv3_4/x2/bn" |
|
top: "conv3_4/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_4" |
|
type: "Concat" |
|
bottom: "concat_3_3" |
|
bottom: "conv3_4/x2" |
|
top: "concat_3_4" |
|
} |
|
layer { |
|
name: "conv3_5/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_4" |
|
top: "conv3_5/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_5/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_5/x1/bn" |
|
top: "conv3_5/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_5/x1" |
|
type: "ReLU" |
|
bottom: "conv3_5/x1/bn" |
|
top: "conv3_5/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_5/x1" |
|
type: "Convolution" |
|
bottom: "conv3_5/x1/bn" |
|
top: "conv3_5/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_5/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_5/x1" |
|
top: "conv3_5/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_5/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_5/x2/bn" |
|
top: "conv3_5/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_5/x2" |
|
type: "ReLU" |
|
bottom: "conv3_5/x2/bn" |
|
top: "conv3_5/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_5/x2" |
|
type: "Convolution" |
|
bottom: "conv3_5/x2/bn" |
|
top: "conv3_5/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_5" |
|
type: "Concat" |
|
bottom: "concat_3_4" |
|
bottom: "conv3_5/x2" |
|
top: "concat_3_5" |
|
} |
|
layer { |
|
name: "conv3_6/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_5" |
|
top: "conv3_6/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_6/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_6/x1/bn" |
|
top: "conv3_6/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_6/x1" |
|
type: "ReLU" |
|
bottom: "conv3_6/x1/bn" |
|
top: "conv3_6/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_6/x1" |
|
type: "Convolution" |
|
bottom: "conv3_6/x1/bn" |
|
top: "conv3_6/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_6/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_6/x1" |
|
top: "conv3_6/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_6/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_6/x2/bn" |
|
top: "conv3_6/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_6/x2" |
|
type: "ReLU" |
|
bottom: "conv3_6/x2/bn" |
|
top: "conv3_6/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_6/x2" |
|
type: "Convolution" |
|
bottom: "conv3_6/x2/bn" |
|
top: "conv3_6/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_6" |
|
type: "Concat" |
|
bottom: "concat_3_5" |
|
bottom: "conv3_6/x2" |
|
top: "concat_3_6" |
|
} |
|
layer { |
|
name: "conv3_7/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_6" |
|
top: "conv3_7/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_7/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_7/x1/bn" |
|
top: "conv3_7/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_7/x1" |
|
type: "ReLU" |
|
bottom: "conv3_7/x1/bn" |
|
top: "conv3_7/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_7/x1" |
|
type: "Convolution" |
|
bottom: "conv3_7/x1/bn" |
|
top: "conv3_7/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_7/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_7/x1" |
|
top: "conv3_7/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_7/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_7/x2/bn" |
|
top: "conv3_7/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_7/x2" |
|
type: "ReLU" |
|
bottom: "conv3_7/x2/bn" |
|
top: "conv3_7/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_7/x2" |
|
type: "Convolution" |
|
bottom: "conv3_7/x2/bn" |
|
top: "conv3_7/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_7" |
|
type: "Concat" |
|
bottom: "concat_3_6" |
|
bottom: "conv3_7/x2" |
|
top: "concat_3_7" |
|
} |
|
layer { |
|
name: "conv3_8/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_7" |
|
top: "conv3_8/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_8/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_8/x1/bn" |
|
top: "conv3_8/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_8/x1" |
|
type: "ReLU" |
|
bottom: "conv3_8/x1/bn" |
|
top: "conv3_8/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_8/x1" |
|
type: "Convolution" |
|
bottom: "conv3_8/x1/bn" |
|
top: "conv3_8/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_8/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_8/x1" |
|
top: "conv3_8/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_8/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_8/x2/bn" |
|
top: "conv3_8/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_8/x2" |
|
type: "ReLU" |
|
bottom: "conv3_8/x2/bn" |
|
top: "conv3_8/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_8/x2" |
|
type: "Convolution" |
|
bottom: "conv3_8/x2/bn" |
|
top: "conv3_8/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_8" |
|
type: "Concat" |
|
bottom: "concat_3_7" |
|
bottom: "conv3_8/x2" |
|
top: "concat_3_8" |
|
} |
|
layer { |
|
name: "conv3_9/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_8" |
|
top: "conv3_9/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_9/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_9/x1/bn" |
|
top: "conv3_9/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_9/x1" |
|
type: "ReLU" |
|
bottom: "conv3_9/x1/bn" |
|
top: "conv3_9/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_9/x1" |
|
type: "Convolution" |
|
bottom: "conv3_9/x1/bn" |
|
top: "conv3_9/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_9/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_9/x1" |
|
top: "conv3_9/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_9/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_9/x2/bn" |
|
top: "conv3_9/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_9/x2" |
|
type: "ReLU" |
|
bottom: "conv3_9/x2/bn" |
|
top: "conv3_9/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_9/x2" |
|
type: "Convolution" |
|
bottom: "conv3_9/x2/bn" |
|
top: "conv3_9/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_9" |
|
type: "Concat" |
|
bottom: "concat_3_8" |
|
bottom: "conv3_9/x2" |
|
top: "concat_3_9" |
|
} |
|
layer { |
|
name: "conv3_10/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_9" |
|
top: "conv3_10/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_10/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_10/x1/bn" |
|
top: "conv3_10/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_10/x1" |
|
type: "ReLU" |
|
bottom: "conv3_10/x1/bn" |
|
top: "conv3_10/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_10/x1" |
|
type: "Convolution" |
|
bottom: "conv3_10/x1/bn" |
|
top: "conv3_10/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_10/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_10/x1" |
|
top: "conv3_10/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_10/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_10/x2/bn" |
|
top: "conv3_10/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_10/x2" |
|
type: "ReLU" |
|
bottom: "conv3_10/x2/bn" |
|
top: "conv3_10/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_10/x2" |
|
type: "Convolution" |
|
bottom: "conv3_10/x2/bn" |
|
top: "conv3_10/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_10" |
|
type: "Concat" |
|
bottom: "concat_3_9" |
|
bottom: "conv3_10/x2" |
|
top: "concat_3_10" |
|
} |
|
layer { |
|
name: "conv3_11/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_10" |
|
top: "conv3_11/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_11/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_11/x1/bn" |
|
top: "conv3_11/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_11/x1" |
|
type: "ReLU" |
|
bottom: "conv3_11/x1/bn" |
|
top: "conv3_11/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_11/x1" |
|
type: "Convolution" |
|
bottom: "conv3_11/x1/bn" |
|
top: "conv3_11/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_11/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_11/x1" |
|
top: "conv3_11/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_11/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_11/x2/bn" |
|
top: "conv3_11/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_11/x2" |
|
type: "ReLU" |
|
bottom: "conv3_11/x2/bn" |
|
top: "conv3_11/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_11/x2" |
|
type: "Convolution" |
|
bottom: "conv3_11/x2/bn" |
|
top: "conv3_11/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_11" |
|
type: "Concat" |
|
bottom: "concat_3_10" |
|
bottom: "conv3_11/x2" |
|
top: "concat_3_11" |
|
} |
|
layer { |
|
name: "conv3_12/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_11" |
|
top: "conv3_12/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_12/x1/scale" |
|
type: "Scale" |
|
bottom: "conv3_12/x1/bn" |
|
top: "conv3_12/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_12/x1" |
|
type: "ReLU" |
|
bottom: "conv3_12/x1/bn" |
|
top: "conv3_12/x1/bn" |
|
} |
|
layer { |
|
name: "conv3_12/x1" |
|
type: "Convolution" |
|
bottom: "conv3_12/x1/bn" |
|
top: "conv3_12/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv3_12/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv3_12/x1" |
|
top: "conv3_12/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_12/x2/scale" |
|
type: "Scale" |
|
bottom: "conv3_12/x2/bn" |
|
top: "conv3_12/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_12/x2" |
|
type: "ReLU" |
|
bottom: "conv3_12/x2/bn" |
|
top: "conv3_12/x2/bn" |
|
} |
|
layer { |
|
name: "conv3_12/x2" |
|
type: "Convolution" |
|
bottom: "conv3_12/x2/bn" |
|
top: "conv3_12/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_3_12" |
|
type: "Concat" |
|
bottom: "concat_3_11" |
|
bottom: "conv3_12/x2" |
|
top: "concat_3_12" |
|
} |
|
layer { |
|
name: "conv3_blk/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_3_12" |
|
top: "conv3_blk/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv3_blk/scale" |
|
type: "Scale" |
|
bottom: "conv3_blk/bn" |
|
top: "conv3_blk/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu3_blk" |
|
type: "ReLU" |
|
bottom: "conv3_blk/bn" |
|
top: "conv3_blk/bn" |
|
} |
|
layer { |
|
name: "conv3_blk" |
|
type: "Convolution" |
|
bottom: "conv3_blk/bn" |
|
top: "conv3_blk" |
|
convolution_param { |
|
num_output: 256 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "pool3" |
|
type: "Pooling" |
|
bottom: "conv3_blk" |
|
top: "pool3" |
|
pooling_param { |
|
pool: AVE |
|
kernel_size: 2 |
|
stride: 2 |
|
} |
|
} |
|
layer { |
|
name: "conv4_1/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "pool3" |
|
top: "conv4_1/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_1/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_1/x1/bn" |
|
top: "conv4_1/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_1/x1" |
|
type: "ReLU" |
|
bottom: "conv4_1/x1/bn" |
|
top: "conv4_1/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_1/x1" |
|
type: "Convolution" |
|
bottom: "conv4_1/x1/bn" |
|
top: "conv4_1/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_1/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_1/x1" |
|
top: "conv4_1/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_1/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_1/x2/bn" |
|
top: "conv4_1/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_1/x2" |
|
type: "ReLU" |
|
bottom: "conv4_1/x2/bn" |
|
top: "conv4_1/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_1/x2" |
|
type: "Convolution" |
|
bottom: "conv4_1/x2/bn" |
|
top: "conv4_1/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_1" |
|
type: "Concat" |
|
bottom: "pool3" |
|
bottom: "conv4_1/x2" |
|
top: "concat_4_1" |
|
} |
|
layer { |
|
name: "conv4_2/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_1" |
|
top: "conv4_2/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_2/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_2/x1/bn" |
|
top: "conv4_2/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_2/x1" |
|
type: "ReLU" |
|
bottom: "conv4_2/x1/bn" |
|
top: "conv4_2/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_2/x1" |
|
type: "Convolution" |
|
bottom: "conv4_2/x1/bn" |
|
top: "conv4_2/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_2/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_2/x1" |
|
top: "conv4_2/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_2/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_2/x2/bn" |
|
top: "conv4_2/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_2/x2" |
|
type: "ReLU" |
|
bottom: "conv4_2/x2/bn" |
|
top: "conv4_2/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_2/x2" |
|
type: "Convolution" |
|
bottom: "conv4_2/x2/bn" |
|
top: "conv4_2/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_2" |
|
type: "Concat" |
|
bottom: "concat_4_1" |
|
bottom: "conv4_2/x2" |
|
top: "concat_4_2" |
|
} |
|
layer { |
|
name: "conv4_3/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_2" |
|
top: "conv4_3/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_3/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_3/x1/bn" |
|
top: "conv4_3/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_3/x1" |
|
type: "ReLU" |
|
bottom: "conv4_3/x1/bn" |
|
top: "conv4_3/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_3/x1" |
|
type: "Convolution" |
|
bottom: "conv4_3/x1/bn" |
|
top: "conv4_3/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_3/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_3/x1" |
|
top: "conv4_3/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_3/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_3/x2/bn" |
|
top: "conv4_3/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_3/x2" |
|
type: "ReLU" |
|
bottom: "conv4_3/x2/bn" |
|
top: "conv4_3/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_3/x2" |
|
type: "Convolution" |
|
bottom: "conv4_3/x2/bn" |
|
top: "conv4_3/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_3" |
|
type: "Concat" |
|
bottom: "concat_4_2" |
|
bottom: "conv4_3/x2" |
|
top: "concat_4_3" |
|
} |
|
layer { |
|
name: "conv4_4/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_3" |
|
top: "conv4_4/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_4/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_4/x1/bn" |
|
top: "conv4_4/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_4/x1" |
|
type: "ReLU" |
|
bottom: "conv4_4/x1/bn" |
|
top: "conv4_4/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_4/x1" |
|
type: "Convolution" |
|
bottom: "conv4_4/x1/bn" |
|
top: "conv4_4/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_4/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_4/x1" |
|
top: "conv4_4/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_4/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_4/x2/bn" |
|
top: "conv4_4/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_4/x2" |
|
type: "ReLU" |
|
bottom: "conv4_4/x2/bn" |
|
top: "conv4_4/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_4/x2" |
|
type: "Convolution" |
|
bottom: "conv4_4/x2/bn" |
|
top: "conv4_4/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_4" |
|
type: "Concat" |
|
bottom: "concat_4_3" |
|
bottom: "conv4_4/x2" |
|
top: "concat_4_4" |
|
} |
|
layer { |
|
name: "conv4_5/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_4" |
|
top: "conv4_5/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_5/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_5/x1/bn" |
|
top: "conv4_5/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_5/x1" |
|
type: "ReLU" |
|
bottom: "conv4_5/x1/bn" |
|
top: "conv4_5/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_5/x1" |
|
type: "Convolution" |
|
bottom: "conv4_5/x1/bn" |
|
top: "conv4_5/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_5/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_5/x1" |
|
top: "conv4_5/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_5/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_5/x2/bn" |
|
top: "conv4_5/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_5/x2" |
|
type: "ReLU" |
|
bottom: "conv4_5/x2/bn" |
|
top: "conv4_5/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_5/x2" |
|
type: "Convolution" |
|
bottom: "conv4_5/x2/bn" |
|
top: "conv4_5/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_5" |
|
type: "Concat" |
|
bottom: "concat_4_4" |
|
bottom: "conv4_5/x2" |
|
top: "concat_4_5" |
|
} |
|
layer { |
|
name: "conv4_6/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_5" |
|
top: "conv4_6/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_6/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_6/x1/bn" |
|
top: "conv4_6/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_6/x1" |
|
type: "ReLU" |
|
bottom: "conv4_6/x1/bn" |
|
top: "conv4_6/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_6/x1" |
|
type: "Convolution" |
|
bottom: "conv4_6/x1/bn" |
|
top: "conv4_6/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_6/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_6/x1" |
|
top: "conv4_6/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_6/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_6/x2/bn" |
|
top: "conv4_6/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_6/x2" |
|
type: "ReLU" |
|
bottom: "conv4_6/x2/bn" |
|
top: "conv4_6/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_6/x2" |
|
type: "Convolution" |
|
bottom: "conv4_6/x2/bn" |
|
top: "conv4_6/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_6" |
|
type: "Concat" |
|
bottom: "concat_4_5" |
|
bottom: "conv4_6/x2" |
|
top: "concat_4_6" |
|
} |
|
layer { |
|
name: "conv4_7/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_6" |
|
top: "conv4_7/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_7/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_7/x1/bn" |
|
top: "conv4_7/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_7/x1" |
|
type: "ReLU" |
|
bottom: "conv4_7/x1/bn" |
|
top: "conv4_7/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_7/x1" |
|
type: "Convolution" |
|
bottom: "conv4_7/x1/bn" |
|
top: "conv4_7/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_7/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_7/x1" |
|
top: "conv4_7/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_7/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_7/x2/bn" |
|
top: "conv4_7/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_7/x2" |
|
type: "ReLU" |
|
bottom: "conv4_7/x2/bn" |
|
top: "conv4_7/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_7/x2" |
|
type: "Convolution" |
|
bottom: "conv4_7/x2/bn" |
|
top: "conv4_7/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_7" |
|
type: "Concat" |
|
bottom: "concat_4_6" |
|
bottom: "conv4_7/x2" |
|
top: "concat_4_7" |
|
} |
|
layer { |
|
name: "conv4_8/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_7" |
|
top: "conv4_8/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_8/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_8/x1/bn" |
|
top: "conv4_8/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_8/x1" |
|
type: "ReLU" |
|
bottom: "conv4_8/x1/bn" |
|
top: "conv4_8/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_8/x1" |
|
type: "Convolution" |
|
bottom: "conv4_8/x1/bn" |
|
top: "conv4_8/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_8/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_8/x1" |
|
top: "conv4_8/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_8/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_8/x2/bn" |
|
top: "conv4_8/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_8/x2" |
|
type: "ReLU" |
|
bottom: "conv4_8/x2/bn" |
|
top: "conv4_8/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_8/x2" |
|
type: "Convolution" |
|
bottom: "conv4_8/x2/bn" |
|
top: "conv4_8/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_8" |
|
type: "Concat" |
|
bottom: "concat_4_7" |
|
bottom: "conv4_8/x2" |
|
top: "concat_4_8" |
|
} |
|
layer { |
|
name: "conv4_9/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_8" |
|
top: "conv4_9/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_9/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_9/x1/bn" |
|
top: "conv4_9/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_9/x1" |
|
type: "ReLU" |
|
bottom: "conv4_9/x1/bn" |
|
top: "conv4_9/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_9/x1" |
|
type: "Convolution" |
|
bottom: "conv4_9/x1/bn" |
|
top: "conv4_9/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_9/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_9/x1" |
|
top: "conv4_9/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_9/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_9/x2/bn" |
|
top: "conv4_9/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_9/x2" |
|
type: "ReLU" |
|
bottom: "conv4_9/x2/bn" |
|
top: "conv4_9/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_9/x2" |
|
type: "Convolution" |
|
bottom: "conv4_9/x2/bn" |
|
top: "conv4_9/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_9" |
|
type: "Concat" |
|
bottom: "concat_4_8" |
|
bottom: "conv4_9/x2" |
|
top: "concat_4_9" |
|
} |
|
layer { |
|
name: "conv4_10/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_9" |
|
top: "conv4_10/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_10/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_10/x1/bn" |
|
top: "conv4_10/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_10/x1" |
|
type: "ReLU" |
|
bottom: "conv4_10/x1/bn" |
|
top: "conv4_10/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_10/x1" |
|
type: "Convolution" |
|
bottom: "conv4_10/x1/bn" |
|
top: "conv4_10/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_10/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_10/x1" |
|
top: "conv4_10/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_10/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_10/x2/bn" |
|
top: "conv4_10/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_10/x2" |
|
type: "ReLU" |
|
bottom: "conv4_10/x2/bn" |
|
top: "conv4_10/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_10/x2" |
|
type: "Convolution" |
|
bottom: "conv4_10/x2/bn" |
|
top: "conv4_10/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_10" |
|
type: "Concat" |
|
bottom: "concat_4_9" |
|
bottom: "conv4_10/x2" |
|
top: "concat_4_10" |
|
} |
|
layer { |
|
name: "conv4_11/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_10" |
|
top: "conv4_11/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_11/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_11/x1/bn" |
|
top: "conv4_11/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_11/x1" |
|
type: "ReLU" |
|
bottom: "conv4_11/x1/bn" |
|
top: "conv4_11/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_11/x1" |
|
type: "Convolution" |
|
bottom: "conv4_11/x1/bn" |
|
top: "conv4_11/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_11/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_11/x1" |
|
top: "conv4_11/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_11/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_11/x2/bn" |
|
top: "conv4_11/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_11/x2" |
|
type: "ReLU" |
|
bottom: "conv4_11/x2/bn" |
|
top: "conv4_11/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_11/x2" |
|
type: "Convolution" |
|
bottom: "conv4_11/x2/bn" |
|
top: "conv4_11/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_11" |
|
type: "Concat" |
|
bottom: "concat_4_10" |
|
bottom: "conv4_11/x2" |
|
top: "concat_4_11" |
|
} |
|
layer { |
|
name: "conv4_12/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_11" |
|
top: "conv4_12/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_12/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_12/x1/bn" |
|
top: "conv4_12/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_12/x1" |
|
type: "ReLU" |
|
bottom: "conv4_12/x1/bn" |
|
top: "conv4_12/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_12/x1" |
|
type: "Convolution" |
|
bottom: "conv4_12/x1/bn" |
|
top: "conv4_12/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_12/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_12/x1" |
|
top: "conv4_12/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_12/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_12/x2/bn" |
|
top: "conv4_12/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_12/x2" |
|
type: "ReLU" |
|
bottom: "conv4_12/x2/bn" |
|
top: "conv4_12/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_12/x2" |
|
type: "Convolution" |
|
bottom: "conv4_12/x2/bn" |
|
top: "conv4_12/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_12" |
|
type: "Concat" |
|
bottom: "concat_4_11" |
|
bottom: "conv4_12/x2" |
|
top: "concat_4_12" |
|
} |
|
layer { |
|
name: "conv4_13/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_12" |
|
top: "conv4_13/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_13/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_13/x1/bn" |
|
top: "conv4_13/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_13/x1" |
|
type: "ReLU" |
|
bottom: "conv4_13/x1/bn" |
|
top: "conv4_13/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_13/x1" |
|
type: "Convolution" |
|
bottom: "conv4_13/x1/bn" |
|
top: "conv4_13/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_13/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_13/x1" |
|
top: "conv4_13/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_13/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_13/x2/bn" |
|
top: "conv4_13/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_13/x2" |
|
type: "ReLU" |
|
bottom: "conv4_13/x2/bn" |
|
top: "conv4_13/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_13/x2" |
|
type: "Convolution" |
|
bottom: "conv4_13/x2/bn" |
|
top: "conv4_13/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_13" |
|
type: "Concat" |
|
bottom: "concat_4_12" |
|
bottom: "conv4_13/x2" |
|
top: "concat_4_13" |
|
} |
|
layer { |
|
name: "conv4_14/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_13" |
|
top: "conv4_14/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_14/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_14/x1/bn" |
|
top: "conv4_14/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_14/x1" |
|
type: "ReLU" |
|
bottom: "conv4_14/x1/bn" |
|
top: "conv4_14/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_14/x1" |
|
type: "Convolution" |
|
bottom: "conv4_14/x1/bn" |
|
top: "conv4_14/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_14/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_14/x1" |
|
top: "conv4_14/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_14/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_14/x2/bn" |
|
top: "conv4_14/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_14/x2" |
|
type: "ReLU" |
|
bottom: "conv4_14/x2/bn" |
|
top: "conv4_14/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_14/x2" |
|
type: "Convolution" |
|
bottom: "conv4_14/x2/bn" |
|
top: "conv4_14/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_14" |
|
type: "Concat" |
|
bottom: "concat_4_13" |
|
bottom: "conv4_14/x2" |
|
top: "concat_4_14" |
|
} |
|
layer { |
|
name: "conv4_15/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_14" |
|
top: "conv4_15/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_15/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_15/x1/bn" |
|
top: "conv4_15/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_15/x1" |
|
type: "ReLU" |
|
bottom: "conv4_15/x1/bn" |
|
top: "conv4_15/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_15/x1" |
|
type: "Convolution" |
|
bottom: "conv4_15/x1/bn" |
|
top: "conv4_15/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_15/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_15/x1" |
|
top: "conv4_15/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_15/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_15/x2/bn" |
|
top: "conv4_15/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_15/x2" |
|
type: "ReLU" |
|
bottom: "conv4_15/x2/bn" |
|
top: "conv4_15/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_15/x2" |
|
type: "Convolution" |
|
bottom: "conv4_15/x2/bn" |
|
top: "conv4_15/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_15" |
|
type: "Concat" |
|
bottom: "concat_4_14" |
|
bottom: "conv4_15/x2" |
|
top: "concat_4_15" |
|
} |
|
layer { |
|
name: "conv4_16/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_15" |
|
top: "conv4_16/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_16/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_16/x1/bn" |
|
top: "conv4_16/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_16/x1" |
|
type: "ReLU" |
|
bottom: "conv4_16/x1/bn" |
|
top: "conv4_16/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_16/x1" |
|
type: "Convolution" |
|
bottom: "conv4_16/x1/bn" |
|
top: "conv4_16/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_16/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_16/x1" |
|
top: "conv4_16/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_16/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_16/x2/bn" |
|
top: "conv4_16/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_16/x2" |
|
type: "ReLU" |
|
bottom: "conv4_16/x2/bn" |
|
top: "conv4_16/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_16/x2" |
|
type: "Convolution" |
|
bottom: "conv4_16/x2/bn" |
|
top: "conv4_16/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_16" |
|
type: "Concat" |
|
bottom: "concat_4_15" |
|
bottom: "conv4_16/x2" |
|
top: "concat_4_16" |
|
} |
|
layer { |
|
name: "conv4_17/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_16" |
|
top: "conv4_17/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_17/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_17/x1/bn" |
|
top: "conv4_17/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_17/x1" |
|
type: "ReLU" |
|
bottom: "conv4_17/x1/bn" |
|
top: "conv4_17/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_17/x1" |
|
type: "Convolution" |
|
bottom: "conv4_17/x1/bn" |
|
top: "conv4_17/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_17/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_17/x1" |
|
top: "conv4_17/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_17/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_17/x2/bn" |
|
top: "conv4_17/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_17/x2" |
|
type: "ReLU" |
|
bottom: "conv4_17/x2/bn" |
|
top: "conv4_17/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_17/x2" |
|
type: "Convolution" |
|
bottom: "conv4_17/x2/bn" |
|
top: "conv4_17/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_17" |
|
type: "Concat" |
|
bottom: "concat_4_16" |
|
bottom: "conv4_17/x2" |
|
top: "concat_4_17" |
|
} |
|
layer { |
|
name: "conv4_18/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_17" |
|
top: "conv4_18/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_18/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_18/x1/bn" |
|
top: "conv4_18/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_18/x1" |
|
type: "ReLU" |
|
bottom: "conv4_18/x1/bn" |
|
top: "conv4_18/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_18/x1" |
|
type: "Convolution" |
|
bottom: "conv4_18/x1/bn" |
|
top: "conv4_18/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_18/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_18/x1" |
|
top: "conv4_18/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_18/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_18/x2/bn" |
|
top: "conv4_18/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_18/x2" |
|
type: "ReLU" |
|
bottom: "conv4_18/x2/bn" |
|
top: "conv4_18/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_18/x2" |
|
type: "Convolution" |
|
bottom: "conv4_18/x2/bn" |
|
top: "conv4_18/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_18" |
|
type: "Concat" |
|
bottom: "concat_4_17" |
|
bottom: "conv4_18/x2" |
|
top: "concat_4_18" |
|
} |
|
layer { |
|
name: "conv4_19/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_18" |
|
top: "conv4_19/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_19/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_19/x1/bn" |
|
top: "conv4_19/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_19/x1" |
|
type: "ReLU" |
|
bottom: "conv4_19/x1/bn" |
|
top: "conv4_19/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_19/x1" |
|
type: "Convolution" |
|
bottom: "conv4_19/x1/bn" |
|
top: "conv4_19/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_19/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_19/x1" |
|
top: "conv4_19/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_19/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_19/x2/bn" |
|
top: "conv4_19/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_19/x2" |
|
type: "ReLU" |
|
bottom: "conv4_19/x2/bn" |
|
top: "conv4_19/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_19/x2" |
|
type: "Convolution" |
|
bottom: "conv4_19/x2/bn" |
|
top: "conv4_19/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_19" |
|
type: "Concat" |
|
bottom: "concat_4_18" |
|
bottom: "conv4_19/x2" |
|
top: "concat_4_19" |
|
} |
|
layer { |
|
name: "conv4_20/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_19" |
|
top: "conv4_20/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_20/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_20/x1/bn" |
|
top: "conv4_20/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_20/x1" |
|
type: "ReLU" |
|
bottom: "conv4_20/x1/bn" |
|
top: "conv4_20/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_20/x1" |
|
type: "Convolution" |
|
bottom: "conv4_20/x1/bn" |
|
top: "conv4_20/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_20/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_20/x1" |
|
top: "conv4_20/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_20/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_20/x2/bn" |
|
top: "conv4_20/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_20/x2" |
|
type: "ReLU" |
|
bottom: "conv4_20/x2/bn" |
|
top: "conv4_20/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_20/x2" |
|
type: "Convolution" |
|
bottom: "conv4_20/x2/bn" |
|
top: "conv4_20/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_20" |
|
type: "Concat" |
|
bottom: "concat_4_19" |
|
bottom: "conv4_20/x2" |
|
top: "concat_4_20" |
|
} |
|
layer { |
|
name: "conv4_21/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_20" |
|
top: "conv4_21/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_21/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_21/x1/bn" |
|
top: "conv4_21/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_21/x1" |
|
type: "ReLU" |
|
bottom: "conv4_21/x1/bn" |
|
top: "conv4_21/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_21/x1" |
|
type: "Convolution" |
|
bottom: "conv4_21/x1/bn" |
|
top: "conv4_21/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_21/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_21/x1" |
|
top: "conv4_21/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_21/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_21/x2/bn" |
|
top: "conv4_21/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_21/x2" |
|
type: "ReLU" |
|
bottom: "conv4_21/x2/bn" |
|
top: "conv4_21/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_21/x2" |
|
type: "Convolution" |
|
bottom: "conv4_21/x2/bn" |
|
top: "conv4_21/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_21" |
|
type: "Concat" |
|
bottom: "concat_4_20" |
|
bottom: "conv4_21/x2" |
|
top: "concat_4_21" |
|
} |
|
layer { |
|
name: "conv4_22/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_21" |
|
top: "conv4_22/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_22/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_22/x1/bn" |
|
top: "conv4_22/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_22/x1" |
|
type: "ReLU" |
|
bottom: "conv4_22/x1/bn" |
|
top: "conv4_22/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_22/x1" |
|
type: "Convolution" |
|
bottom: "conv4_22/x1/bn" |
|
top: "conv4_22/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_22/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_22/x1" |
|
top: "conv4_22/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_22/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_22/x2/bn" |
|
top: "conv4_22/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_22/x2" |
|
type: "ReLU" |
|
bottom: "conv4_22/x2/bn" |
|
top: "conv4_22/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_22/x2" |
|
type: "Convolution" |
|
bottom: "conv4_22/x2/bn" |
|
top: "conv4_22/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_22" |
|
type: "Concat" |
|
bottom: "concat_4_21" |
|
bottom: "conv4_22/x2" |
|
top: "concat_4_22" |
|
} |
|
layer { |
|
name: "conv4_23/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_22" |
|
top: "conv4_23/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_23/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_23/x1/bn" |
|
top: "conv4_23/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_23/x1" |
|
type: "ReLU" |
|
bottom: "conv4_23/x1/bn" |
|
top: "conv4_23/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_23/x1" |
|
type: "Convolution" |
|
bottom: "conv4_23/x1/bn" |
|
top: "conv4_23/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_23/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_23/x1" |
|
top: "conv4_23/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_23/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_23/x2/bn" |
|
top: "conv4_23/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_23/x2" |
|
type: "ReLU" |
|
bottom: "conv4_23/x2/bn" |
|
top: "conv4_23/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_23/x2" |
|
type: "Convolution" |
|
bottom: "conv4_23/x2/bn" |
|
top: "conv4_23/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_23" |
|
type: "Concat" |
|
bottom: "concat_4_22" |
|
bottom: "conv4_23/x2" |
|
top: "concat_4_23" |
|
} |
|
layer { |
|
name: "conv4_24/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_23" |
|
top: "conv4_24/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_24/x1/scale" |
|
type: "Scale" |
|
bottom: "conv4_24/x1/bn" |
|
top: "conv4_24/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_24/x1" |
|
type: "ReLU" |
|
bottom: "conv4_24/x1/bn" |
|
top: "conv4_24/x1/bn" |
|
} |
|
layer { |
|
name: "conv4_24/x1" |
|
type: "Convolution" |
|
bottom: "conv4_24/x1/bn" |
|
top: "conv4_24/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv4_24/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv4_24/x1" |
|
top: "conv4_24/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_24/x2/scale" |
|
type: "Scale" |
|
bottom: "conv4_24/x2/bn" |
|
top: "conv4_24/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_24/x2" |
|
type: "ReLU" |
|
bottom: "conv4_24/x2/bn" |
|
top: "conv4_24/x2/bn" |
|
} |
|
layer { |
|
name: "conv4_24/x2" |
|
type: "Convolution" |
|
bottom: "conv4_24/x2/bn" |
|
top: "conv4_24/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_4_24" |
|
type: "Concat" |
|
bottom: "concat_4_23" |
|
bottom: "conv4_24/x2" |
|
top: "concat_4_24" |
|
} |
|
layer { |
|
name: "conv4_blk/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_4_24" |
|
top: "conv4_blk/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv4_blk/scale" |
|
type: "Scale" |
|
bottom: "conv4_blk/bn" |
|
top: "conv4_blk/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu4_blk" |
|
type: "ReLU" |
|
bottom: "conv4_blk/bn" |
|
top: "conv4_blk/bn" |
|
} |
|
layer { |
|
name: "conv4_blk" |
|
type: "Convolution" |
|
bottom: "conv4_blk/bn" |
|
top: "conv4_blk" |
|
convolution_param { |
|
num_output: 512 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "pool4" |
|
type: "Pooling" |
|
bottom: "conv4_blk" |
|
top: "pool4" |
|
pooling_param { |
|
pool: AVE |
|
kernel_size: 2 |
|
stride: 2 |
|
} |
|
} |
|
layer { |
|
name: "conv5_1/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "pool4" |
|
top: "conv5_1/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_1/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_1/x1/bn" |
|
top: "conv5_1/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_1/x1" |
|
type: "ReLU" |
|
bottom: "conv5_1/x1/bn" |
|
top: "conv5_1/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_1/x1" |
|
type: "Convolution" |
|
bottom: "conv5_1/x1/bn" |
|
top: "conv5_1/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_1/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_1/x1" |
|
top: "conv5_1/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_1/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_1/x2/bn" |
|
top: "conv5_1/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_1/x2" |
|
type: "ReLU" |
|
bottom: "conv5_1/x2/bn" |
|
top: "conv5_1/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_1/x2" |
|
type: "Convolution" |
|
bottom: "conv5_1/x2/bn" |
|
top: "conv5_1/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_1" |
|
type: "Concat" |
|
bottom: "pool4" |
|
bottom: "conv5_1/x2" |
|
top: "concat_5_1" |
|
} |
|
layer { |
|
name: "conv5_2/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_1" |
|
top: "conv5_2/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_2/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_2/x1/bn" |
|
top: "conv5_2/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_2/x1" |
|
type: "ReLU" |
|
bottom: "conv5_2/x1/bn" |
|
top: "conv5_2/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_2/x1" |
|
type: "Convolution" |
|
bottom: "conv5_2/x1/bn" |
|
top: "conv5_2/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_2/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_2/x1" |
|
top: "conv5_2/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_2/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_2/x2/bn" |
|
top: "conv5_2/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_2/x2" |
|
type: "ReLU" |
|
bottom: "conv5_2/x2/bn" |
|
top: "conv5_2/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_2/x2" |
|
type: "Convolution" |
|
bottom: "conv5_2/x2/bn" |
|
top: "conv5_2/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_2" |
|
type: "Concat" |
|
bottom: "concat_5_1" |
|
bottom: "conv5_2/x2" |
|
top: "concat_5_2" |
|
} |
|
layer { |
|
name: "conv5_3/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_2" |
|
top: "conv5_3/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_3/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_3/x1/bn" |
|
top: "conv5_3/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_3/x1" |
|
type: "ReLU" |
|
bottom: "conv5_3/x1/bn" |
|
top: "conv5_3/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_3/x1" |
|
type: "Convolution" |
|
bottom: "conv5_3/x1/bn" |
|
top: "conv5_3/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_3/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_3/x1" |
|
top: "conv5_3/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_3/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_3/x2/bn" |
|
top: "conv5_3/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_3/x2" |
|
type: "ReLU" |
|
bottom: "conv5_3/x2/bn" |
|
top: "conv5_3/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_3/x2" |
|
type: "Convolution" |
|
bottom: "conv5_3/x2/bn" |
|
top: "conv5_3/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_3" |
|
type: "Concat" |
|
bottom: "concat_5_2" |
|
bottom: "conv5_3/x2" |
|
top: "concat_5_3" |
|
} |
|
layer { |
|
name: "conv5_4/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_3" |
|
top: "conv5_4/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_4/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_4/x1/bn" |
|
top: "conv5_4/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_4/x1" |
|
type: "ReLU" |
|
bottom: "conv5_4/x1/bn" |
|
top: "conv5_4/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_4/x1" |
|
type: "Convolution" |
|
bottom: "conv5_4/x1/bn" |
|
top: "conv5_4/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_4/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_4/x1" |
|
top: "conv5_4/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_4/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_4/x2/bn" |
|
top: "conv5_4/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_4/x2" |
|
type: "ReLU" |
|
bottom: "conv5_4/x2/bn" |
|
top: "conv5_4/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_4/x2" |
|
type: "Convolution" |
|
bottom: "conv5_4/x2/bn" |
|
top: "conv5_4/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_4" |
|
type: "Concat" |
|
bottom: "concat_5_3" |
|
bottom: "conv5_4/x2" |
|
top: "concat_5_4" |
|
} |
|
layer { |
|
name: "conv5_5/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_4" |
|
top: "conv5_5/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_5/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_5/x1/bn" |
|
top: "conv5_5/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_5/x1" |
|
type: "ReLU" |
|
bottom: "conv5_5/x1/bn" |
|
top: "conv5_5/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_5/x1" |
|
type: "Convolution" |
|
bottom: "conv5_5/x1/bn" |
|
top: "conv5_5/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_5/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_5/x1" |
|
top: "conv5_5/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_5/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_5/x2/bn" |
|
top: "conv5_5/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_5/x2" |
|
type: "ReLU" |
|
bottom: "conv5_5/x2/bn" |
|
top: "conv5_5/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_5/x2" |
|
type: "Convolution" |
|
bottom: "conv5_5/x2/bn" |
|
top: "conv5_5/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_5" |
|
type: "Concat" |
|
bottom: "concat_5_4" |
|
bottom: "conv5_5/x2" |
|
top: "concat_5_5" |
|
} |
|
layer { |
|
name: "conv5_6/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_5" |
|
top: "conv5_6/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_6/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_6/x1/bn" |
|
top: "conv5_6/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_6/x1" |
|
type: "ReLU" |
|
bottom: "conv5_6/x1/bn" |
|
top: "conv5_6/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_6/x1" |
|
type: "Convolution" |
|
bottom: "conv5_6/x1/bn" |
|
top: "conv5_6/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_6/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_6/x1" |
|
top: "conv5_6/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_6/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_6/x2/bn" |
|
top: "conv5_6/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_6/x2" |
|
type: "ReLU" |
|
bottom: "conv5_6/x2/bn" |
|
top: "conv5_6/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_6/x2" |
|
type: "Convolution" |
|
bottom: "conv5_6/x2/bn" |
|
top: "conv5_6/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_6" |
|
type: "Concat" |
|
bottom: "concat_5_5" |
|
bottom: "conv5_6/x2" |
|
top: "concat_5_6" |
|
} |
|
layer { |
|
name: "conv5_7/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_6" |
|
top: "conv5_7/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_7/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_7/x1/bn" |
|
top: "conv5_7/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_7/x1" |
|
type: "ReLU" |
|
bottom: "conv5_7/x1/bn" |
|
top: "conv5_7/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_7/x1" |
|
type: "Convolution" |
|
bottom: "conv5_7/x1/bn" |
|
top: "conv5_7/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_7/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_7/x1" |
|
top: "conv5_7/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_7/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_7/x2/bn" |
|
top: "conv5_7/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_7/x2" |
|
type: "ReLU" |
|
bottom: "conv5_7/x2/bn" |
|
top: "conv5_7/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_7/x2" |
|
type: "Convolution" |
|
bottom: "conv5_7/x2/bn" |
|
top: "conv5_7/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_7" |
|
type: "Concat" |
|
bottom: "concat_5_6" |
|
bottom: "conv5_7/x2" |
|
top: "concat_5_7" |
|
} |
|
layer { |
|
name: "conv5_8/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_7" |
|
top: "conv5_8/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_8/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_8/x1/bn" |
|
top: "conv5_8/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_8/x1" |
|
type: "ReLU" |
|
bottom: "conv5_8/x1/bn" |
|
top: "conv5_8/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_8/x1" |
|
type: "Convolution" |
|
bottom: "conv5_8/x1/bn" |
|
top: "conv5_8/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_8/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_8/x1" |
|
top: "conv5_8/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_8/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_8/x2/bn" |
|
top: "conv5_8/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_8/x2" |
|
type: "ReLU" |
|
bottom: "conv5_8/x2/bn" |
|
top: "conv5_8/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_8/x2" |
|
type: "Convolution" |
|
bottom: "conv5_8/x2/bn" |
|
top: "conv5_8/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_8" |
|
type: "Concat" |
|
bottom: "concat_5_7" |
|
bottom: "conv5_8/x2" |
|
top: "concat_5_8" |
|
} |
|
layer { |
|
name: "conv5_9/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_8" |
|
top: "conv5_9/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_9/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_9/x1/bn" |
|
top: "conv5_9/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_9/x1" |
|
type: "ReLU" |
|
bottom: "conv5_9/x1/bn" |
|
top: "conv5_9/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_9/x1" |
|
type: "Convolution" |
|
bottom: "conv5_9/x1/bn" |
|
top: "conv5_9/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_9/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_9/x1" |
|
top: "conv5_9/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_9/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_9/x2/bn" |
|
top: "conv5_9/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_9/x2" |
|
type: "ReLU" |
|
bottom: "conv5_9/x2/bn" |
|
top: "conv5_9/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_9/x2" |
|
type: "Convolution" |
|
bottom: "conv5_9/x2/bn" |
|
top: "conv5_9/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_9" |
|
type: "Concat" |
|
bottom: "concat_5_8" |
|
bottom: "conv5_9/x2" |
|
top: "concat_5_9" |
|
} |
|
layer { |
|
name: "conv5_10/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_9" |
|
top: "conv5_10/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_10/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_10/x1/bn" |
|
top: "conv5_10/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_10/x1" |
|
type: "ReLU" |
|
bottom: "conv5_10/x1/bn" |
|
top: "conv5_10/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_10/x1" |
|
type: "Convolution" |
|
bottom: "conv5_10/x1/bn" |
|
top: "conv5_10/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_10/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_10/x1" |
|
top: "conv5_10/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_10/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_10/x2/bn" |
|
top: "conv5_10/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_10/x2" |
|
type: "ReLU" |
|
bottom: "conv5_10/x2/bn" |
|
top: "conv5_10/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_10/x2" |
|
type: "Convolution" |
|
bottom: "conv5_10/x2/bn" |
|
top: "conv5_10/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_10" |
|
type: "Concat" |
|
bottom: "concat_5_9" |
|
bottom: "conv5_10/x2" |
|
top: "concat_5_10" |
|
} |
|
layer { |
|
name: "conv5_11/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_10" |
|
top: "conv5_11/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_11/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_11/x1/bn" |
|
top: "conv5_11/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_11/x1" |
|
type: "ReLU" |
|
bottom: "conv5_11/x1/bn" |
|
top: "conv5_11/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_11/x1" |
|
type: "Convolution" |
|
bottom: "conv5_11/x1/bn" |
|
top: "conv5_11/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_11/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_11/x1" |
|
top: "conv5_11/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_11/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_11/x2/bn" |
|
top: "conv5_11/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_11/x2" |
|
type: "ReLU" |
|
bottom: "conv5_11/x2/bn" |
|
top: "conv5_11/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_11/x2" |
|
type: "Convolution" |
|
bottom: "conv5_11/x2/bn" |
|
top: "conv5_11/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_11" |
|
type: "Concat" |
|
bottom: "concat_5_10" |
|
bottom: "conv5_11/x2" |
|
top: "concat_5_11" |
|
} |
|
layer { |
|
name: "conv5_12/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_11" |
|
top: "conv5_12/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_12/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_12/x1/bn" |
|
top: "conv5_12/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_12/x1" |
|
type: "ReLU" |
|
bottom: "conv5_12/x1/bn" |
|
top: "conv5_12/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_12/x1" |
|
type: "Convolution" |
|
bottom: "conv5_12/x1/bn" |
|
top: "conv5_12/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_12/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_12/x1" |
|
top: "conv5_12/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_12/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_12/x2/bn" |
|
top: "conv5_12/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_12/x2" |
|
type: "ReLU" |
|
bottom: "conv5_12/x2/bn" |
|
top: "conv5_12/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_12/x2" |
|
type: "Convolution" |
|
bottom: "conv5_12/x2/bn" |
|
top: "conv5_12/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_12" |
|
type: "Concat" |
|
bottom: "concat_5_11" |
|
bottom: "conv5_12/x2" |
|
top: "concat_5_12" |
|
} |
|
layer { |
|
name: "conv5_13/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_12" |
|
top: "conv5_13/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_13/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_13/x1/bn" |
|
top: "conv5_13/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_13/x1" |
|
type: "ReLU" |
|
bottom: "conv5_13/x1/bn" |
|
top: "conv5_13/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_13/x1" |
|
type: "Convolution" |
|
bottom: "conv5_13/x1/bn" |
|
top: "conv5_13/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_13/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_13/x1" |
|
top: "conv5_13/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_13/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_13/x2/bn" |
|
top: "conv5_13/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_13/x2" |
|
type: "ReLU" |
|
bottom: "conv5_13/x2/bn" |
|
top: "conv5_13/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_13/x2" |
|
type: "Convolution" |
|
bottom: "conv5_13/x2/bn" |
|
top: "conv5_13/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_13" |
|
type: "Concat" |
|
bottom: "concat_5_12" |
|
bottom: "conv5_13/x2" |
|
top: "concat_5_13" |
|
} |
|
layer { |
|
name: "conv5_14/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_13" |
|
top: "conv5_14/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_14/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_14/x1/bn" |
|
top: "conv5_14/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_14/x1" |
|
type: "ReLU" |
|
bottom: "conv5_14/x1/bn" |
|
top: "conv5_14/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_14/x1" |
|
type: "Convolution" |
|
bottom: "conv5_14/x1/bn" |
|
top: "conv5_14/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_14/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_14/x1" |
|
top: "conv5_14/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_14/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_14/x2/bn" |
|
top: "conv5_14/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_14/x2" |
|
type: "ReLU" |
|
bottom: "conv5_14/x2/bn" |
|
top: "conv5_14/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_14/x2" |
|
type: "Convolution" |
|
bottom: "conv5_14/x2/bn" |
|
top: "conv5_14/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_14" |
|
type: "Concat" |
|
bottom: "concat_5_13" |
|
bottom: "conv5_14/x2" |
|
top: "concat_5_14" |
|
} |
|
layer { |
|
name: "conv5_15/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_14" |
|
top: "conv5_15/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_15/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_15/x1/bn" |
|
top: "conv5_15/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_15/x1" |
|
type: "ReLU" |
|
bottom: "conv5_15/x1/bn" |
|
top: "conv5_15/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_15/x1" |
|
type: "Convolution" |
|
bottom: "conv5_15/x1/bn" |
|
top: "conv5_15/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_15/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_15/x1" |
|
top: "conv5_15/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_15/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_15/x2/bn" |
|
top: "conv5_15/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_15/x2" |
|
type: "ReLU" |
|
bottom: "conv5_15/x2/bn" |
|
top: "conv5_15/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_15/x2" |
|
type: "Convolution" |
|
bottom: "conv5_15/x2/bn" |
|
top: "conv5_15/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_15" |
|
type: "Concat" |
|
bottom: "concat_5_14" |
|
bottom: "conv5_15/x2" |
|
top: "concat_5_15" |
|
} |
|
layer { |
|
name: "conv5_16/x1/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_15" |
|
top: "conv5_16/x1/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_16/x1/scale" |
|
type: "Scale" |
|
bottom: "conv5_16/x1/bn" |
|
top: "conv5_16/x1/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_16/x1" |
|
type: "ReLU" |
|
bottom: "conv5_16/x1/bn" |
|
top: "conv5_16/x1/bn" |
|
} |
|
layer { |
|
name: "conv5_16/x1" |
|
type: "Convolution" |
|
bottom: "conv5_16/x1/bn" |
|
top: "conv5_16/x1" |
|
convolution_param { |
|
num_output: 128 |
|
bias_term: false |
|
kernel_size: 1 |
|
} |
|
} |
|
layer { |
|
name: "conv5_16/x2/bn" |
|
type: "BatchNorm" |
|
bottom: "conv5_16/x1" |
|
top: "conv5_16/x2/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_16/x2/scale" |
|
type: "Scale" |
|
bottom: "conv5_16/x2/bn" |
|
top: "conv5_16/x2/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_16/x2" |
|
type: "ReLU" |
|
bottom: "conv5_16/x2/bn" |
|
top: "conv5_16/x2/bn" |
|
} |
|
layer { |
|
name: "conv5_16/x2" |
|
type: "Convolution" |
|
bottom: "conv5_16/x2/bn" |
|
top: "conv5_16/x2" |
|
convolution_param { |
|
num_output: 32 |
|
bias_term: false |
|
pad: 1 |
|
kernel_size: 3 |
|
} |
|
} |
|
layer { |
|
name: "concat_5_16" |
|
type: "Concat" |
|
bottom: "concat_5_15" |
|
bottom: "conv5_16/x2" |
|
top: "concat_5_16" |
|
} |
|
layer { |
|
name: "conv5_blk/bn" |
|
type: "BatchNorm" |
|
bottom: "concat_5_16" |
|
top: "conv5_blk/bn" |
|
batch_norm_param { |
|
eps: 1e-5 |
|
} |
|
} |
|
layer { |
|
name: "conv5_blk/scale" |
|
type: "Scale" |
|
bottom: "conv5_blk/bn" |
|
top: "conv5_blk/bn" |
|
scale_param { |
|
bias_term: true |
|
} |
|
} |
|
layer { |
|
name: "relu5_blk" |
|
type: "ReLU" |
|
bottom: "conv5_blk/bn" |
|
top: "conv5_blk/bn" |
|
} |
|
layer { |
|
name: "pool5" |
|
type: "Pooling" |
|
bottom: "conv5_blk/bn" |
|
top: "pool5" |
|
pooling_param { |
|
pool: AVE |
|
global_pooling: true |
|
} |
|
} |
|
layer { |
|
name: "fc6" |
|
type: "Convolution" |
|
bottom: "pool5" |
|
top: "fc6" |
|
convolution_param { |
|
num_output: 1000 |
|
kernel_size: 1 |
|
} |
|
} |
|
|