File size: 3,755 Bytes
66a73ae
 
f48676a
66a73ae
 
bad655a
 
 
f48676a
bad655a
 
 
 
f48676a
 
 
bad655a
 
66a73ae
bad655a
f48676a
bad655a
 
 
 
66a73ae
 
 
f48676a
 
 
 
 
 
 
 
 
 
 
 
bad655a
 
 
f48676a
 
 
66a73ae
83720fc
66a73ae
 
 
 
 
 
 
 
 
 
bad655a
 
 
 
 
 
66a73ae
 
d13ee8a
83720fc
d13ee8a
66a73ae
bad655a
d13ee8a
f48676a
 
66a73ae
f48676a
 
 
66a73ae
f48676a
66a73ae
 
 
f48676a
 
 
 
 
66a73ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from PIL import Image

# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load Stable Diffusion pipelines
text_to_image_pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)

image_to_image_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)

# Function for Text-to-Image
def text_to_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
    image = text_to_image_pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
    ).images[0]
    return image


# Function for Image-to-Image
def image_to_image(prompt, negative_prompt, init_image, strength, guidance_scale, num_inference_steps):
    init_image = init_image.convert("RGB").resize((512, 512))  # Ensure the image is resized
    image = image_to_image_pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        init_image=init_image,
        strength=strength,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
    ).images[0]
    return image


# Gradio Interface
with gr.Blocks(theme='NoCrypt/miku') as demo:
    gr.Markdown("# Text-to-Image and Image-to-Image generation")
    
    with gr.Tab("Text-to-Image"):
        gr.Markdown("Generate images from text prompts")
        with gr.Row():
            text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your text here...")
            text_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...")
        with gr.Row():
            guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale")
            num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps")
        with gr.Row():
            generate_btn = gr.Button("Generate", elem_classes=["primary-button"])
        with gr.Row():
            text_output = gr.Image(label="Generated Image")

        generate_btn.click(
            text_to_image,
            inputs=[text_prompt, text_negative_prompt, guidance_scale, num_inference_steps],
            outputs=text_output,
        )

    with gr.Tab("Image-to-Image"):
        gr.Markdown(
            "Modify images - Upload an image, provide a prompt describing the transformation, and adjust settings for desired results."
        )
        with gr.Row():
            init_image = gr.Image(type="pil", label="Upload Initial Image")
        with gr.Row():
            img_prompt = gr.Textbox(label="Prompt", placeholder="Describe modifications...")
            img_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...")
        with gr.Row():
            strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Strength")
            img_guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale")
            img_num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps")
        with gr.Row():
            img_generate_btn = gr.Button("Generate", elem_classes=["primary-button"])
        with gr.Row():
            img_output = gr.Image(label="Modified Image")

        img_generate_btn.click(
            image_to_image,
            inputs=[img_prompt, img_negative_prompt, init_image, strength, img_guidance_scale, img_num_inference_steps],
            outputs=img_output,
        )

demo.launch(share=True)