anushka81
typo
83720fc
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from PIL import Image
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Stable Diffusion pipelines
text_to_image_pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
image_to_image_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
# Function for Text-to-Image
def text_to_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
image = text_to_image_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
return image
# Function for Image-to-Image
def image_to_image(prompt, negative_prompt, init_image, strength, guidance_scale, num_inference_steps):
init_image = init_image.convert("RGB").resize((512, 512)) # Ensure the image is resized
image = image_to_image_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
init_image=init_image,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
return image
# Gradio Interface
with gr.Blocks(theme='NoCrypt/miku') as demo:
gr.Markdown("# Text-to-Image and Image-to-Image generation")
with gr.Tab("Text-to-Image"):
gr.Markdown("Generate images from text prompts")
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your text here...")
text_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...")
with gr.Row():
guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale")
num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps")
with gr.Row():
generate_btn = gr.Button("Generate", elem_classes=["primary-button"])
with gr.Row():
text_output = gr.Image(label="Generated Image")
generate_btn.click(
text_to_image,
inputs=[text_prompt, text_negative_prompt, guidance_scale, num_inference_steps],
outputs=text_output,
)
with gr.Tab("Image-to-Image"):
gr.Markdown(
"Modify images - Upload an image, provide a prompt describing the transformation, and adjust settings for desired results."
)
with gr.Row():
init_image = gr.Image(type="pil", label="Upload Initial Image")
with gr.Row():
img_prompt = gr.Textbox(label="Prompt", placeholder="Describe modifications...")
img_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...")
with gr.Row():
strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Strength")
img_guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale")
img_num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps")
with gr.Row():
img_generate_btn = gr.Button("Generate", elem_classes=["primary-button"])
with gr.Row():
img_output = gr.Image(label="Modified Image")
img_generate_btn.click(
image_to_image,
inputs=[img_prompt, img_negative_prompt, init_image, strength, img_guidance_scale, img_num_inference_steps],
outputs=img_output,
)
demo.launch(share=True)